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1. Summary

This report summarizes efforts to enhance our knowledge of swirl injector dynamics and behavior of
energetic additives that may influence engine performance and stability. The swirl injector work was carried
over from a prior contract and concluded about one year ago. Several publications have stemmed from these
studies and we discovered fundamental resonance conditions for these injectors that provides a simple and
practical mechanism to compute frequencies where substantial injector/chamber coupling may be present.
These results were confirmed in experimental cold flow studies using a unique pulsator design developed in
our group.

The energetic particle studies have necessitated the development of an entirely new model, based on the
PBE (Population Balance Equation). The PBE has been integrated into the GEMS code developed in Prof.
Merkle’s research group using a fast Eulerian method for advancing particle trajectories in time. The
DQMOM (Direct Quadrature Methods of Moments) [4] is used for representation of the particle size
evolution given an initial distribution of sizes in the propellants. Along with PBE, the harsh condition in
combustion chamber and nozzle leads us to develop models for laminar and turbulent collision(or
coalescence) and breakup. The most models which can be found in chemistry and chemical engineering
papers are limited only by the turbulent viscous effect in a low turbulence case. Unlike these investigations,
the drops in a combustion chamber are exposed to a highly turbulent flow and consequently inertial effects
of the drops induced by larger density of particles than the surrounding gas are important. So, we divide the
collision and breakup mechanisms into four regimes and each regimes are modeled: laminar hydrodynamic
collision/breakup, laminar aerodynamic collision/breakup, turbulent hydrodynamic collision/breakup, and
turbulent aerodynamic collision/breakup. Here, the term, hydrodynamic, means the shearing motion of
surrounding fluid is the main source for collision and breakup and the term, aerodynamic, means the
velocity difference between the particle and the surrounding fluid is the main source for collision and
breakup.
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Technology Transfer

The research group at Purdue is supporting a variety of developments throughout the industry. Under
NASA sponsorship, models that were initially created in the AFOSR program are being used to assess the
forced response of plain orifice “pressure atomizers” under a wide range of conditions. The models are
being incorporated into the industry-standard Rocket Combustor Interactive Design (ROCCID) code that is
used by NASA MSFC, U.S. Air Force, and numerous propulsion contractors. The models will substantially
improve the basic treatment of these atomizers and the Purdue team is working closely with Sierra
Engineering on implementation of the new models. Results from current AFOSR-sponsored efforts in the
dynamics of swirl injectors has also been transmitted to NASA officials as well as prior simulations of shear
coaxial injectors that are of great interest for new Crew Exploration Vehicle propulsion. Our team works
closely with small companies including Sierra Engineering and INSpace LLC to provide recommendations
on injector designs. We have also provided inputs on gas/gas injectors for potential application to lunar
transfer vehicles under sponsorship from entities affiliated with Kistler Aerospace. Currently, we are
working on nonlinear dynamics of swirl injectors and hope to be able to create a submodel for ROCCID that
would incorporate these results and permit the code to assess a whole new class of injectors. A comparable
submodel for shear and swirl coaxial injectors is also under development under NASA sponsorship,
although this is a rather low-level effort at present.



2. Research Objectives

The understanding of the complex combustion phenomena present in liquid rocket engines begins with
the fundamental process of fuel and oxidizer jet atomization. The objective of this research has been to
develop a model to account for agglomeration and breakup of oxides of energetic particles used in solid and
liquid propellants. The focus of the work is to understand the role these particles/droplets play in
combustion stability and overall engine performance.

At present there is substantial interest in studying the effect of nanoenergetic ingredients that have
recently become available as a result of manufacturing process advances. The nanomaterials provide for
dramatic reductions in the time required for combustion events, but pose challenges in terms of
incorporation in the propellant and in terms of the tremendously dense cloud of particles formed as a result
of the combustion process. In contrast to micron-sized particles used in prior research, agglomeration events
become much more prevalent when nanomaterials are employed. Breakup of agglomerates and potential
wall impingement in the throat/nozzle region are also important processes that effect overall motor
performance via the two-phase flow loss and nozzle erosion. For this reason, a computational tool has been
developed to assess agglomeration and breakup to assess particle size development for arbitrary combustor
type (solid motor, liquid or hybrid rocket). The objectives of the study is to provide a theoretical basis for
performance changes attributed to use of the nanoenergetic materials and to assess design parameters that
influence such performance.



3. Status of Research — Development of Energetic Particle
Agglomeration and Breakup Methodology

1. Introduction

Metal additives are used to enhance the energy of solid propellants and are also given consideration for loading in
liquid slurries for the same reason. Historically, micron-sized particles have been used for this application, but the
recent large-scale manufacture of nano-sized particles by numerous vendors changes the overall number of particles
and their average spacing dramatically. For this reason, collision/agglomeration processes that may have been
neglected in the past could be of significant importance in these flows. In case of aluminum loaded solid propellants,
Gany et al. [1] have experimentally investigate the AI/Al,O; agglomerates forming on the propellant surface and
observed a mean of about 250 pm when a propellant contains 6 pm aluminum particles. More recently, Najjar et al. [2]
have referred to Sabnis et al. [3] and indicated that the typical values of the drop size distribution entering the
combustion chamber are a mean of 150 um for larger Aluminum particle and 1.5 pm for smaller Aluminum Oxide
particle, which is bimodal. Nano-aluminum loaded solid propellants exhibit significantly different agglomeration near
the surface and thus the size of agglomerates leaving the burning surface can be significantly smaller. Much less is
known about the potential for agglomeration of particle loaded liquid slurries/gels, but regions of high shear that are
present due to mixing processes could presumable provide substantial opportunities for agglomeration to occur. The
idealized concept of particle size variation in rocket chamber is illustrated in Fig. 1.1.

Fig.1.1 Illustration of the simple concept of droplet size variation in rocket chamber

A simple analysis of the particle to particle distance in rocket chamber can show the substantial opportunities for
agglomeration due to collision of particles. As Najjar et al. [2] have indicated that the burning of 20% aluminum
loaded propellant of solid rocket booster results in approximately 10" droplets of a mean diameter of 100 pm in a core
volume of 63 m’. Following Friedlander [4], the average center-to-center distance between two adjacent particles
distributed randomly is given by 0.55396N,,"* where N,, is a number density of particles. Given the number density
using the data of Najjar et al. (N, ,=number of droplets/contained volume), the average distance between two adjacent
particles is approximately 22 um. Considering the droplets of a mean of 100 pm, and that the overall distance traveled
is of the order of 10’s of meters, it is inevitable that collisions will occur.

The drops entering the chamber have a substantial effect on the rocket motor efficiency. The increase of the
specific impulse and damping of chamber instability may be desirable effects. However, slag accumulation, nozzle
erosion, and significant exhaust signature are disadvantages of aluminum loaded propellant. The particle phase
characteristics, especially the number density (or mass concentration) and the drop size may be thought as governing
parameters in assessing these effects. As particles exit the nozzle with velocities less than the gas depending on their
size and drag characteristics a two-phase flow loss is always present in gas/particle nozzle flows. Therefore, the
prediction of particle phase characteristics is of high importance in quantifying two-phase flow losses and ascertaining
performance advantages.

The past and present studies of two phase flow inside the rocket chamber have focused on the effects of the
droplet on the gas flow by two-way coupling [2, 5, 6] and the effects of the gas flow on the particle phase by one-way
coupling [6]. However, none of these studies have been focusing on the effects of the collision and breakup of the
droplets and consequent drop size change. Although Najjar et al. [2] have included the collision effects in assessing the
drop mass change, the collision efficiency in their model is simply set as a constant, 0.25.



The flow in a large rocket chamber can experience highly shearing motion due to its mean value change and
highly turbulent motion at the same time. The high Reynolds number and the complex geometry of solid rocket
chamber leads to the locally complex flow motion and two adjacent particles can be easily intercepted by the turbulent
motion of flow. In addition, the highly shearing motion of mean flow near boundary layer can result in
collision/breakup. Thereby, stochastic collision and breakup events can be one of the governing mechanism of the
particle to particle interaction in a rocket chamber and collision and breakup due to mean flow motion can be another
governing mechanism.

The coalescence and breakup process of drops[7, 8] and bubbles [9] have been investigated in the chemistry and
chemical engineering communities. The modeling of the coalescence and breakup processes in an agitated vessel have
been important topic in chemistry to assess the mixing effects. Their interests are usually limited only by the turbulent
viscous effect in a low turbulence case. Unlike the two immisicible liquids in an agitated vessel, the drops in a
combustion chamber are exposed to a highly turbulent flow and consequently inertial effects of the drops induced by
larger density of particles than the surrounding gas are important. These factors lead to difficulties in using
coalescence and breakup models developed in chemistry but these models can be a good starting point in current
modeling.

Thus, the stochastic collision and breakup are addressed here and the collision/breakup in laminar flow and
combination of the mean flow effects and turbulent flow effects are discussed too. We divide the collision and breakup
mechanisms into four regimes and each regimes are modeled: laminar hydrodynamic collision/breakup, laminar
acrodynamic  collision/breakup, turbulent hydrodynamic collision/breakup, and turbulent aerodynamic
collision/breakup. Here, the term, hydrodynamic, means the shearing motion of surrounding fluid is the main source
for collision and breakup and the term, aerodynamic, means the velocity difference between the particle and the
surrounding fluid is the main source for collision and breakup. More details on each term are given in Chapter 2.

Along with the collision/breakup models, to assess the particle phase velocity field while holding the reasonable
computational efficiency, an Eulerian-Fast (or Equilibrium) Eulerian two-phase methodology is chosen and the direct
quadrature method moment (DQMOM) approximation is applied to the population balance equation (PBE) is used to
model the coalescence and breakup. The details of methodology are provided in Chapter 2.

The objective of the current study is to develop models for the collision and breakup processes applicable to a
simulation of the two phase flow in a rocket chamber and carry a test simulation in a typical rocket chamber and
attached converging-diverging nozzle. For this purpose, Computations were performed on a typical converging-
diverging nozzle attached to a rocket motor. The MMD (Mass Mean Diameter) was predicted according to different
droplet characteristics and pressure at nozzle inlet and the scales of nozzle. To validate the models, the predicted
results are compared to Hermsen [10]’s empirical correlation which predicts the particle size at the exit plane of SRM
nozzle. The results are reasonably agreed with the empirical correlation. However, the simulation is very sensitive
with the initial droplet condition (i.e. mean diameter and standard deviation of number distribution), therefore, the
initial conditions of droplets should be chosen very carefully.



I1. Physical Modeling

2.1 Flow field description — Navier-Stokes equation

The 2-D unsteady Navier-Stokes equations for the Newtonian viscous carrier fluid are applicable under the
continuum condition. The flow field is described by mass, momentum and energy conservation laws complemented by
an appropriate equation of state and additional constitutive relations. Two turbulence equation from the & — o model of
Wilcox [11] are added to the conservation form of the Navier-Stokes equations without any body forces and source
terms induce by the particle phase:

9 + ) = ua +H 2.1
ot oOx, Ox

1

A

where the vectors, Q, E , V, and H are given by

P o4
pu, puu + 5;]_P
O=| pi® - p E=| puh’ (2.22)
pk pul_k
P U@
0
2 ou ou Ou 0
—Sud —t+pul —+—L |+
3% e e T 0
J i
0
2 Ou ou Ou oT
s |u | —=p6 —LE+u —+—L ||+ K— 5 _ ou .
k J i i y axl
J
.\ Ok
(,u+C,u )— T Ou
T axi Aié_l_Bpwz
14
ow T
(m +C’UT)5_X_

1

The x; and u; represent Cartesian coordinates and velocity components, P and p represent the pressure and density, A’
is the stagnation enthalpy, and K is the thermal conductivity. The 4, 4, B, and B* are closure constants for Wilcox

turbulence model, z; is the Reynolds stress tensor, and v, is the turbulence eddy viscosity. These terms are given as

follows:
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The gas phase governing equations is solved under the platform of Generalized Equation and Mesh Solver (GEMS)
code[12], which uses contemporary numerical methods to solve coupled systems of partial differential equations.



2.2 Particle phase modeling — Population Balance Equation (PBE)

2.2.1 QMOM (Quadrature Methods of Moments)
The advection-diffusion equation for the number density field is given by
%+V-(U,,n) =V-(D,Vn)+S (2.4)
where 7 is is the particle number density, D; is the diffusion coefficient, and S is the source term corresponding to
coagulation and breakup. In a high Reynolds number or shearing flow, the diffusion term can be ignored and the
advection-diffusion equation becomes a form similar to Smoulchowski’s equation [13] which is usually referred as the
population balance equation.

Using a one-way coupling approach, no mass, momentum, and energy interchange is considered. The particle
phase is also assumed to be in thermally equilibrium state. The equation constructing agglomeration/breakage models
for the dispersed phase is the population balance equation for the particle number density which is as follows [14]:
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This equation assumes the same velocity of particle phase as the surrounding fluid. This equation expresses the fact
that there is break-up and coalescence of droplets in the flow in the absence of interactions with walls. The term
n(v,t) is the number density function of the particle volume v and U is the velocity of the carrier fluid velocity due to

Stokesian particle assumption. Here, «, is the collision efficiency between particles with volume v and v, «, is the

coalescence efficiency, [ is the volume based collsion kernel that describes the frequency that particles of volume v

and V' collide, a is the fragment distribution function, and b is the volume-based breakage kernel that is the
frequency of breakage of a particle of volume v [14]. The first term on the right-hand side represents the formation of
volume Vv by collision and the second term represents the loss of the volume v by collision. The third term represents
the formation of volume v by break-up and the last term represents the loss of volume v by break-up.

Solving this equation directly will require large computational power due to the presence of a large number of
classes of particles. In addition, the source terms in the equation represent that the equations for each phase are highly
coupled by each other. Therefore, the simplification of the governing equations is highly required. This can be
achieved by QMOM (Quadrature Method of Moments) developed by Mcgraw [15] which is a powerful technique to
determine the evolution of the lower-order moments of the distribution by a quadrature-based approximation. Wang et
al. [14] have successfully applied this approach in Taylor Coutte flow, and Marchisio et al. [16] have showed that this
approach leads to very small error comparing to discretized population balance equation (DPB). Wang et al. [14]’s
length based QMOM approximation process of PBE is summarized here. The QMOM starts from defining the
moments and taking quadrature approximation as follows:

0 N
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0 .
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The term N is the order of the quadrature formula and v is the particle volume. Accordingly, m, is the total particle
number density and m; is the total particle volume concentration (same as particle volume fraction). Applying the
length-based definition of moments to the transport equation of the particle density gives (superscript ' is omitted
here):
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The collision efficiency is ay =a,(/;,1,), the coalescence efficiency is aU =a,(/,1,), the collision frequency of

drops of length /; and /; is 3, = 3(/,,/;) , the breakage frequency of drops of length /; is b, =b(/;), and the daughter

drop probability density function for the binary fragmentation is given by [14]
a =207 (2.8)

1 1



The weights, w; and abscissas, /; are found via using of the product-difference (PD) algorithm.
The product difference (PD) algorithm, which is used to find weights (W; ) and abscissas (/) from the moments

(m'Z ) while solving PBE, is given by Mcgraw [15] and Wang et al. [14] and it is summarized here.
The first step is to obtain a matrix P as follows:

P, =0, for i=l,.....,2N+1
P, =(-1)"m, for i=l,.....,2N 2.9)
B,=R, b, ,—B,,B,,, for i=lL..,2N+2-jandj=3,..,2N+]

From the obtained matrix P, the coefficients (&, ) are given as follows:
a,=0
. (2.10)
a,=R,,/(B,R,,) for i=2,...,2N
Then, a symmetric tridiagonal matrix S is obtained with the following diagonal (s,;) and co-diagonal (s, ;)

components:
Sg; =0+ 0, for i=1,.....N

Seqi = -0, for i=1,.....N -1

After the symmetric tridiagonal matrix is obtained, the weights and abscissas are obtained by finding its eigenvalues
and eigenvectors. The eigenvalues of the matrix S are the abscissas and the weights are given by

W, =myu;, for i=1.... N (2.12)

where v, is the first component of eigenvector 7/, . The eigenvalues and eigenvectors are found by QL algorithm [17].

@2.11)

2.2.2 DQMOM and a fast Eulerian approach
The number of drops in a chamber is typically very dense as explained above and then the particle phase is treated
as continua. Therefore, the particle phase can be described via an Eulerian approach. For more simplicity and
numerical efficiency, a fast (or equilibrium) Eulerian approach [2, 18] is used, such that mass and momentum
conservation are automatically satisfied. In this approach, the particle phase velocity is handled as a field variable
which is given by
— DU

U,=U-71— 2.13
P TDt ( )

where U, and U are the particle phase and gaseous phase velocity vectors, respectively. The term ¢ is the relaxation

time of the particle and D/ Dt is the material derivative in the Eulerian view.

Because the particles have larger density than the gaseous phase, a distribution over particle velocities is needed to
be considered. A multivariate number distribution function » depends on /, U,, x;, ¢t which can be denoted as n(/, U;, x;,
7). In this case, the transport equation is given by

ot Pz x Pz ouU dt

i pi
which was proposed by Williams [19] for the LHS.
To reduce the number of variables, the averaged number distribution function and the averaged drop phase

velocities can be given as follows:
n(d) = Lon(d,UpJ )dUp’,,

_ ji Un(d,U,, U,

n(d)

Integrating the equation (2.10) over the velocity assuming a Dirac delta function of velocity distribution yields the
following PBE:

2n(l,U x.,t)+i{UpJ.n(l,U x.,t)}+ 0 {dUp’in(l,Up,i,xi,t)}=S(I,Up,l.,x,,t)
2 (2.14)

(2.15)
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0 0
an(l,x[,t)+%(Upw,n(l,x,,t)) = S(Z,x/.,t) (2.16)

which is same as the equation (2.4). Following Marchisio and Fox [20], the particle size distribution function can be
treated as a sum of Dirac delta functions:

i
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Substituting the equation (2.13) into the equation (2.12) and integrating the equation (2.12) gives the following the
PBE approximated by DQMOM:

5 5 (2.18)

5§q+§(UP,i§Q):S§"I q:l’ ..... ,N

where & is the weighted abscissas defined by & =w,/ . The source terms can be obtained by solving the following

equation.
q ~wq

N N —
(1=k)D 1S, +kD 7S, =Sws k=0,...,2N -1 (2.19)
g=1 g=1

where Em,k is the source term obtained in QMOM case and it is given in the RHS of the equation. The source terms,
S,, and S, , can be obtained from the linear system Ax=b which each matrix is defined as follows:

1 1 0 0
0 0 1 1
A= ~I} -1} 21, 21,
2(1-N)YPY o 2(1-N)YY (2N -1 .o (2N =1)12V?
(1-N)4 (1-N)E (N1 (v -1)i; 020
Sw,]
S
SWN ')0
x: ’ b:
Sg’1 _
N Sm,ZN—l
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2.3 Stochastic coalescence/breakup modeling

2.3.1 Collision frequency kernel
2.3.1.1 Spherical formulation of collision kernel

Saffman and Turner [21] have studied the collision frequency kernel and presented two formulations of the
collision kernel which are spherical formulation and cylindrical formulation. Comparing these two formulations, the
collision kernel in cylindrical formulation is the cylindrical volume passing through the effective collision circle per
unit time (in other words, the fluid volume flux across the effective collision area) and the collision kernel in spherical
formulation is the volume of fluid across the collision sphere surface (volume flux across the collision sphere surface).
The cylindrical formulation is possible in the special case of uniform shear flow which is same case with
Smoulchowski [13] and the more general way will be the spherical formulation because the relative velocity between
particles depends on the orientation of the collision radius R, as it is described in Wang et al. [22].

Collision
Sphere | Streamline

Fig.2.1 Schematic of collision of two droplets of radii »; and r; in
Spherical formulation; the collision radius R, is the sum of
radii ; and r», the relative motion follows the streamlines

The Saffman and Turner [21]’s spherical formulation is described in Figure 2.1. Considering two particles of radii
r, and r,, the moving particle is the particle of radius », supposing the particle of radius », as a fixed central particle.
Assuming there is no distortion of flow field due to the existence of the particle, the particle », are moving along the
streamlines. Defining the collision sphere as a sphere of radius R.=rtr, centered on the fixed central particle, the
collision frequency of the fixed central particle is the flux of the fluid having the velocity which is same as the relative
velocity between two particles, multiplied by the number density of the moving particles. This flux should be induced
by the relative velocity which is inwardly normal to the collision sphere because this directional component of
velocity is only the component causing the collision. Denoting the unit vector outwardly normal to the collision sphere

(radial direction of the collision sphere) as n. and the relative velocity inwardly normal to the collision sphere as w ,
the flux J; across the collision sphere is given by
Jy=—[W-n a4 (2.21)

The negative sign is given because the dot product between this velocity vector and outward normal vector is negative.
Supposing that the particles are distributed in the flow, the collision frequency N, which is the total number of
collision between particles of the number densities #; and 7, in unit volume and unit time is given by

N =—nn, f Wn, dA (2.22)
Thus, the collision frequency function (or collision kernel) S, for the laminar flow is given by
8= :_IW.;, dA (2.23)

where dA is the area element on the surface of a sphere.

Developing further for the turbulent flow, when the particles are randomly distributed and their fluctuating radial
velocity component is w, (sign of this component are not decided yet, the effect of its mean component <> is not
considered), the mean flux J; towards the collision sphere is given by



Jt:—< f w dA> (2.24)

— [, da= [ w, a4 (2.25)

Thus, the mean flux J, towards the collision sphere is given by

J,:—<fw, dA>:%f<|wr|> dA (2.26)

w, <0
For isotropic turbulence, the collision kernel S, is given by
B, =27R’ (

which is the same form as Saffman and Turner [21]’s.

WF

) (2.27)

2.3.1.2 Collision frequency kernel - Turbulent flow
The present study is focused on the collision (or coalescence) and breakup of two unequal spherical drops.
Concerning the hydrodynamics between two drops, the assumption of two equal drops will make it easy to analyze
flow motion. The collision of equally assumed two drops is described in Figure 2.2. Following Chesters [23], two
unequal spherical drops can be characterized by two equal drops of equivalent radius, R,,, which is given by
2RR
L

R =—1 1L 2.28
“« R+R (2-28)
z J

where R; and R; are radii of two unequal drops. When a drop of R,, is smaller than Kolmogorov’s length scale, the
drop is considered as it is in the viscous subrange of turbulence and a drop larger than Kolmogorov’s length scale is
considered as it is in the inertial subrange. The Kolmogrov’s length scale # is given by

n= (ﬁj (2.29)
&

where v is the kinematic viscosity of the fluid.

\'1
h/2 hi2

—
Vo — —
‘—
&
H(r,t)

Fig.2.2 Schematic of droplet collision; left is for two unequal droplets collision,
right is for two equally assumed droplets collision (R=R=R.,)

2.3.1.3 Relative velocity between two drops

Before discussing the collision frequency function, it is convenient to consider the relative velocity between two
colliding drops. In analogy with Williams and Crane [24], the relative velocity between two particles can be thought
as it is induced by two major effects: the effect of velocity gradient of the carrier fluid between two particles and the
effect of different inertial response of particles of different radius to the movement of carrier fluid. According to these
considerations, the relative velocity between two particles can be constituted by the effects of velocity gradient and

different inertial response. It is supposed that two droplets within the fluid have velocities U »1 and U »2 before they
collide. The carrier fluid surrounding these drops have velocities U, and U,. When the slip velocities between the

particle and the carrier fluid are denoted by O, =U,1—U: and Q,=U,»—U:, the relative velocity vector

W =U,,—U,, can be expressed:



WZW] +Ws
- o - (2.30)
=0,-0 +U.-U,

The first term on RHS W, represents the amount of velocity difference induced by inertial effects of large density

particles and the second term Ws represents the velocity difference induced by the velocity gradient (or strain rate) of
the carrier fluid. The modeling of each term in the laminar flow will be accomplished in the future.

Considering the collision of two particles of radius r; and r;, the responsible component of relative velocity to the
collision is only the component in the direction of the centerline which connects the center of two particles. Figure 2.3
illustrates which components of the relative velocity are related to the collision. Supposing the fixed central particle of

radius r;, the moving particle »; has velocity W, and Ws of which W/,r and Ws,y makes two particles to approach

each other whereas W, and W s, cause movement away from the fixed central particle. Therefore, only the velocity

components that induce approaching motion must be considered and the velocity components causing movement
away must be neglected from the consideration.

Collision sphere
Fig.2.3 Schematic of components of relative velocity between
two particles of radii 7; and r;

Considering the turbulent flow, the mean square of the relative velocity is given by [21]
<7V7V>:<:V17V1>+<7V37Vs> (2.31)

It is assumed that ws is statistically independent of the slip velocities g, and ¢, . Using the notation

Ws = Wg ,Wg W the second term on the RHS is given by

<71/s~7\/s>:<w§’x>+<w§,y>+<w§’z> (2.32)
Using the mean square of the velocity gradient in viscous subrange which is given by
ou) le
—| )=—— (Taylor [25 2.33
<[8x]> 15V( ylor [25]) (2.33)

For isotropic turbulence, it has been shown that [26]

{7)-4(20)

Thus,
ouY R? ¢

2 :RZ - —_c — 2.35
()= K <[8x] > 15 v (2:35)

It follows that
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This form is same as the velocity gradient term in the analysis of Saffman and Turner [21] considering the inertial
effect together with the effect of velocity gradient term.

—

To evaluate the first inertial effect term <w/ ~w/>, it is assumed that the velocities of the carrier fluid near two

adjacent particles are the same. This assumption is valid when the two particles are smaller than the smallest eddy, in
other words, it is valid when they are in viscous subrange. This assumption is equivalent to the assumption of Saffman
and Turner [21] which is used in evaluating the same term as the first inertial effect term of this paper. This

assumption results in the assumption that the correlation coefficient between ¢, and g, is unity where ¢, and g, are

the fluctuating parts of the relative velocity between particle and its surrounding fluid of particle 1 and 2 respectively.
The evaluation of this term will be discussed in the future work. Using the assumption, the first inertial effect term can
be given by

<$I‘;}1>:< l_/l'p,Z_;lp,l ‘ ;p,z _;{'p,l > (237)
Therefore, the i-direction mean square relative velocity between two particles, <W12,,- > can be expressed:
<W12,i> = <”2,1,i > + <”;27,2,i> - 2<up,1,iup,2,i> (2.38)

This equation is the starting point of Williams and Crane [24]’s analysis of the fluctuating relative motion of two
particles induced by slip motion between the particle and fluid. Saffman and Turner [21] also have derived the mean

square of the relative velocity (w- w> considering the effects of velocity gradient and the inertial effect in viscous

subrange. However, in fundamental assumption of their approach, the relaxation time is smaller than the time scale of

smallest eddy. So, the term for the inertial effect cannot be used in our case. Instead, Williams and Crane [24] have

derived the term of inertial effect for the small drops which is not limited by the small relaxation time. In Williams

and Crane [24]’s analysis, the particle motion is described by the simplified Tchen [27]’s force balance equation
ignoring the added mass, Basset history, and gravitational acceleration terms:

%4-@:—3& %—I—ﬂ where T =

dt T 2p,+p, dt T o

20 + r’
P TP T (2.39)

where u; and u,; are the fluctuating parts of the fluid and particle velocities in i-direction, p, and p, are the densities of
the fluid and particle, and 7 is the relaxation time of the particle of radius . Stoke’s drag law is applied here
assuming the size of the particle is small enough. For p, >> p,, the first term on RHS can be neglected. In analogy with
Levins and Glastonbury [28], using a more accurate form of the wave-number spectrum which includes the influence
of turbulence within the viscous subrange, the mean square of the particle velocity is obtained by Williams and Crane

as follows:
1 1
<”;,i>:<“5>711 H—Q_ 14++0 v (2-402)
L, LY 15v)" 2
where QZTLL Tsz 7/=2(7fj ,1=<uz>1/2(?v) <u2>=§k (2.40b)

The mean square fluctuating velocity <u2> is given in terms of turbulent kinetic energy k assuming isotropic

turbulence. The 6 is the non-dimensional relaxation time of drop of radius 7, 7 is the particle relaxation time, and L, is
the longitudinal integral length scale which is approximated by 0.5L where L is the integral length scale of the largest
energy-containing eddy approximated by k"*/(B’w) in k — model. Finally, / is the Taylor’s microscale length.

Starting from Panchev [29]’s integrated form of Tchen’s equation of motion, Williams and Crane derived the
covariance <up’1,l.up’2,l.> using the more accurate wavenumber spectrum for the small particles which satisfies the

condition @ << 1 (which imposes that the particle is in viscous subrange). Thus, using the mean square particle
velocity and the covariance terms, the i-direction mean square relative velocity between two particles <W12,,-> for

viscous subrange can be expressed:

(wi) = {u?)L (‘9"_6’){ ! - ! } (2.41)
T Reg < y=1 6+6, |(1+6)1+6,) (1+y0)1+0))

For large particles which satisfy the condition § >> 1 (which imposes the particle is in energy containing region), it
was shown that:



5 /o 1 1 4
<w]’i>Rm’>L _<ui > (1+6) + (1+9j) ( | : jl/z (2.42)

6,+6.+60, +
’ (1+6) (1+06)

J

They have successfully showed that the mean square relative velocity for viscous subrange goes to Saffman and
Turner [21]’s inertial term at lower-limit of small relaxation time and the mean square relative velocity for energy
containing region goes to Abrahamson [30]’s term at higher-limit of large particle size. They also derived the
universal solution of the mean square relative velocity which can be used in inertial subrange, it is given by:

5 1+6 +0
0+0)" =490, gyive)
(W7),n o =) o (2.43)

" neyger AT (6,+0,)(1+6)(1+6,)
The universal solution of Williams and Crane approaches Abrahmson [30]’s mean square relative velocity for energy-
containing range at higher-limit. It should be noted here that their universal solution does not approach Saffman and
Turner’s inertial term as it is explained in Kuris and Kusters [31]. However, the divergence for very small particle is
appreciable as it is shown by Williams and Crane [24].

— —

Finally, the mean square relative velocity induced by different inertial response, <w; : W1> , can be calculated

assuming the mean square relative velocities are same in an arbitrary direction which implies <w,zx> = <w,2y> = <w,22> .

Saffman and Turner [21] have shown that only the small error is introduced in the collision frequency due to this
anomaly. In isotropic turbulence, the mean square relative velocity for the viscous subrange is given by:

(wiow) = r ©6-0) R T (2.44)
e =1 6,40, [(1+0)1+0)  (+70)1+70)

The mean square relative velocity for the inertial subrange is given by:

1+6.+6,
(0,+0) =400, |~~~
(1+6)1+86,)

(wiowr) =2k (2.45)
Ry 6, +0)1+0)(1+06))

Accordingly, the mean square relative velocity <;v7v> can be obtained using the equations given above for <7v] -Vv]>

and <17v5 Vvs> . For inertial subrange, the term <17v5 Vvs> is neglected as explained in the next section.

2.3.1.4 Collision frequency function

The collisions are likely to be dependent on the relative motion between two particles. The mechanisms considered
for the collisions are the shear mechanism and the accelerating (inertia) mechanism. The shear mechanism is due to
the relative motion induced by the viscous force inside the turbulent eddy. The accelerating mechanism is due to the
relative motion induced by inertial effects between the drop and suspending fluid. The most widely used collision
frequency model considering the shear mechanism only is the Saffman and Turner [21]’s model in viscous subrange
which is as follows:

1/2
B, = 1.294(fj R’ (2.46)

1%

Saffman and Turner [21] have also derived the collision frequency including the accelerating mechanism. However, as
explained in the previous section, it is assumed that the time scale of each drop is smaller than the Kolmogorov’s time
scale (time scale of the smallest eddy) fundamentally and this is not matched with the aluminum drops in the
combustion chamber due to p, >> p,. Instead, the collision kernel is modified to include Williams and Crane [24]’s
result for small drops which is given in the previous chapter.

For isotropic turbulence, the collision kernel £, which is obtained in the previous chapter for the spherical
formulation is given by

8, =27R’ (|w,|) (2.47)

Using the inertial and velocity gradient terms given in the previous chapter, the mean square relative velocity for
viscous subrange is given as follows:

WI"



<W~W> :<W1'W1> +<WS‘WS>
Ry <n Ry <n Ry <n

Y (61_9_/)2 1 _ 1 Rczi
v—1 6,46, |1+6)1+6,) (1+10)1+0)| 3 v

(2.48)

=2k

The mean value of radial relative velocity <|wr|> is independent of the orientation of radial direction in isotropic

turbulence. In analogy with Saffman and Turner [21], it is assumed that w, is aligned with the x-axis so that

<

<w2>:<w2,>:<wf>. Again, this anomaly leads to only small error as discussed in the previous chapter. Thus, the

x v

w

”

>:<|wx|>. Assuming the mean square relative velocities are same in an arbitrary direction which implies

mean square relative velocity in radial direction is given by

Ire T3 T1 6,40, |(0+6)010,) (+16)0110)] 9 v

In analogy with Williams and Crane [24], it is assumed that the relative velocity in radial direction spreads by a

Gaussian distribution. Thus, the mean of absolute relative velocity is the first order moments of

by
() =] | POw)O8)

112 (2.50)
2 H\1/2
z(;j (w?)

Accordingly, the collision frequency function for the viscous subrange is given by

ﬂz,ij,Req <n (Rl ’ RJ )

172
0.-0.y (2.51)
37771 6406, |(+6)1+6) (+0)1+18)] 9 v

The same discrepancy as Saffman and Turner [21]’s two models is observed. When the drops are identical (inertial
effects of two adjacent drops confined in the smallest eddy are same), the constant becomes 1.671 whereas the
constant in the model concerned the shear mechanism only is 1.294. This discrepancy is caused by the different
approximation in defining isotropy as explained by Saffman and Turner and the error is considered as small [21].

For inertial subrange, Kuris and Kusters [31] have shown that the accelerative mechanism becomes more
dominant with increasing particle sizes comparing Saffman and Turner’s shear term and the universal solution of
inertial term derived in their analysis which is very similar to Williams and Crane’s solution. The mean square of the
velocity gradient in inertial subrange is given by [32]

<7vs.7vs> — 1372 er " (2.52)
R(,q>r]

w_| which is given

w

r

Wr

4

Comparing the shear term in viscous and inertial subrange, Saffman and Turner [21]’s term is second order in particle
size whereas Rotta [32]’s term is O(R””). Therefore, the effect of velocity gradient in inertial subrange is neglected
and the mean square relative velocity in radial direction and the collision frequency function for the inertial subrange

are given as follows:
) 1+6,+0,
C+0) =490 (v oya+o)
: : +6)1+6,
O ~2i SR (2.53a)
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6, +6,)* ~400,

(2.53b)

2.3.1.5 Collision frequency kernel - Laminar flow

The first consideration of particle collision rate in a laminar flow goes back to 1917 by Smoluchowski [13]. He
considered a uniform laminar shear flow, which is a special case in which only one directional velocity component of
the fluid exists and it varies linearly. He assumed that the particles follow the exact flow streamlines so that the shear



rate, G, of the flow motion is responsible for the relative motion between two particles. He also assumed that the
streamlines are straight so that the effect of the particle on the flow motion is neglected in his analysis. Considering
two particles in a laminar flow which are a fixed central particle of radius 7; and flowing particle of radius r;, the
collision occurs when a center of flowing particle approaches within a distance (r; + r;). A distance (r; + r;) is
conventionally defined as a radius of collision sphere. This collision is illustrated in Fig. 2.4a. The collision frequency
can then be calculated by the flux of the fluid inwardly normal to the effective cross-section collision area (=

) multiplied by the number density of moving particles. The corresponding cylindrical formulation of collision
frequency is described Fig. 2.4b. The radius of cylinder is the collision radius, (7; + r;) and the axis of cylinder passes
through the center of the fixed particle. The total flux towards the effective collision area (which is same as the
collision frequency function) is given by

B = %G(r,» +r,) (2.54)

The Smoulchowski’s analysis is oversimplified and it is desirable to take into account more complex motion of
flow and accurate amount of flux across the surface of a sphere in spherical formulation of collision frequency
function. More recently, this is first considered by Kramer and Clark [33]. They obtained the orthokinetic coagulation
frequency (or collision frequency) for the laminar incompressible flow considering the strain rates acting within the
fluid. Although their approach can be considered as more comprehensive than Smoulchowski’s analysis, it is still
limited because the strain rates which cause departure of a moving particle from a fixed central particle are simply
eliminated from the collision process. More precisely, the positive strain rate can contribute to the amount of flux
flowing towards the surface of the collision sphere because the negative and positive strain rate can be applied at the
same time. Thus, the positive strain rate will result in decrease of the total flux and it should not be ignored. In
addition, more practically, the compressible effect can deform the fluid element and it can contribute to the particle
collision because the contraction of element occurs (OU, /0x, <0) and then more contribution to the collision will

take place than incompressible case (OU, /0x; =0). This effect can be significant in case of the flow in a rocket

chamber or nozzle. Therefore, their approach will be modified here to incorporate the neglected effects mentioned
above.

(a)

(b) up, rel

Fig. 2.4 Schematic of Smoulchowski’s droplet collision; (a) illustrates two unequal
droplets in uniform laminar flow, (b) shows the cylindrical formulation of
collision process



Considering the motion of fluid elements of viscous fluid, it can be thought that the fluid element responds linearly to
deformation rate (or velocity gradient, deformation rate tensor is e, =0U, / 0x,) when the fluid element is small. In

addition, the values of deformation rate acting on the fluid element can be considered as constants as long as the fluid
element is sufficiently small. When two adjacent particles are assumed to exist in the fluid element, the motion of the
particles is determined by the deformation of fluid element. When the fluid element deforms due to the velocity
gradient, the fluid elements experience the linear deformation which can cause the volume change of element in a
compressible fluid, the rotation, and angular deformation which change the shape of the fluid element. The types of
fluid element deformation are illustrated in Fig 2.5.

The deformation rate tensor, e;, can be represented by a linear combination of two 2" rank tensors as follows:

oU,
e =—-
T ox,
2.55
_l an_an +l an+an ( )
2{ ox,  ox 2{ o, ox
The first term in RHS is antisymmetric part of the deformation rate tensor which is called as the rate of rotation tensor,
Q;, and the second term is symmetric part called as the rate of strain tensor, s;;, which are given by:
1{oU, U,
Q =—| —-—— 2.56a
) ( ox,  Ox, j ( )
o _1fou, 9Y, (2.56b)
7o2lex, o, '

The rate of rotation tensor is responsible to the rotation of the fluid element. Considering the two particles in the
fluid element, the rotation does not induce the collision as described in Fig. 2.6a. The rate of rotation tensor causes no
change of shape or volume of fluid element and correspondingly it does not cause the particle motion in the direction
of reduction of the distance. The Fig.2.6b shows the collision occurred by the normal components of the rate of strain

tensor and Fig. 2.6¢ shows the collision occurred by the shearing components of the tensor. Therefore, the rate of
strain tensor can be thought as the only source which is responsible for the collision.

Deformation
Rate

Fluid

Linear Rotation Angular
Element Deformation

Deformation

Fig. 2.5 Schematic of the fluid element deformation
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Following Kramer and Clark [33] and Clark [34], the rate of strain tensor can be diagonalized without loss of
information by the rotation of the coordinate system to principal coordinate because the rate of strain tensor is
symmetrical. In case of two-dimensional symmetric rate of strain tensor (s1,=s,;) can be diagonalized as follows:

s; O

0 s,

S S

11 12

(2.57)

S Sx
! 2 22 .
where 5 = cos®0+s,,sin’ 6 + 2s,, sinf cosd

o ) 2 .
Sy, =S8,,8In" 0 +5,,cos” 8 —2s,,sinfcost

Gzéarctan[ 251, ]

S11 T S

Now, the collision is induced only by the normal components of transformed rate of strain tensor and the next step

will be to calculate the total flux across the surface of the collision sphere. The Fig. 2.7 illustrates the components of

relative velocities induced by normal strain rates in two dimensions with a negative component in principal x

direction and a positive component in principal y direction. The velocity components induced by normal strains are
given by

W. = s, R, sing

W.=s,R cos¢

y

(2.58)

Therefore, the velocity induced by normal strains in radial direction is given by

W.=s, R sin’ ¢+s,R cos’ ¢ (2.59)
Based on the equations given above, the hydrodynamic collision frequency function in laminar flow that is same as the
inwardly normal flux across the collision sphere can be calculated as follows:

,81,/1 =Jl,h == J' WrdA

w, <0
=-4zR’ [%(sn — 5y )(cos3 ¢, —cos’ ¢, ) — 5, (cos @, —cosg, )}
where  for s,>0, 5, >0 J,=0 (2.60)
for s,>0, s, <0 ¢ =0, ¢, =arctan(«/—s'22 /s, )
for s,<0, s,,>0 & =arctan(\/—s'22 /s, ), ¢,=r/2

for s,<0, s, <0 $ =0, §=7/2

The aerodynamic collision frequency function in laminar flow field can be obtained from the fast Eulerian
approach. From the fast Eulerian method, the relative velocity between two particles due to slip motion assuming the

same DU / Dt at two close points is given by

- DU
W, :(TI —TZ)E

Based on the conservation of flux across the particle surface (IWr ndA=0 ), the inwardly normal flux is given by

(2.61)

Jo=—| W,dA:%er dA

w, <0 o (262)
where W =W, -n
The coordinate transformation gives the following aerodynamic collision frequency in laminar flows:
Bro="0a =|W .| R (2.63)




2.3.2 Breakup frequency kernel
2.3.2.1 Turbulent flow — Hydrodynamic breakup

The viscous shear forces in a turbulent suspension acts on the droplet surface and results in the velocity gradient.
This velocity gradient leads to deform the droplet surface and the breakup of the drop may occur [35, 36]. Considering
the hydrodynamic stresses as a source of the breakup, Delichatsios and Probstein [37] have derived the breakup
frequency in the inertial subrange. They have used the approximation of the probability density distribution of that the

velocity difference, Au(D;), across the drop of diameter D; to Gaussian distribution with the variance <(Au)2> and cut-

off velocity Au.. The breakup of a droplet occurs when the velocity difference exceeds its critical value Au,,;. The
breakup frequency function (breakup frequency kernel) b(R;) of the droplet of radius R; and the distribution function
are given by

' . . (2.64)
1 (Au) (Au)
P(Au)= exp{— —expi——5—
(&x) \27o, p{ 207} } p{ 20!
respectively. In their model, the variance o> and the cut-off velocity is given by
o} =((Au)’)=1.88(2¢R)™"
(2.65)

Au, =3((8u)?)” =30,
respectively. Regardless of the direction of velocity difference acting on a droplet, all of the velocity differences can
be responsible for the breakup. Thus, the estimation of the velocity difference Au is done in the way of finding the first
order moment of |Au| instead of using the root-mean-square of the velocity difference. However, the first order

moment of the above probability distribution on |Au| does not converge. Instead, we assume that the velocity
difference spreads by the exact Gaussian distribution (no term of the cut-off velocity, in analogy with Williams and
Crane [24]). Thus, the velocity difference assuming it is the first order moments of |Au| is given by

Au =" |Au| P(Aw)d(Au)

1/2
:(ﬂ] (25Ri)1/3
T

where P(Au) is the Gaussian distribution. Therefore, applying the above equation into the given distribution function,
the breakup frequency for inertial subrange is expressed by
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It should be note that the probability distribution P(Au) is negative when g.;/e is smaller than 53.154 due to the
existence of the term of the cut-off velocity. Thus, the breakup frequency is set to zero in this limit.

Kusters [38] have derived the breakup frequency by assuming that the velocity difference Au(D;) across the drop
of diameter D; follows the exact Gaussian distribution for the viscous and inertial subrange (in analogy with Saffman
and Turner [21] and Williams and Crane [24]). His work has started from the same formula of the breakup frequency
given by Delichatsios and Probstein [37] except the assumption of the probability distribution. We used his approach
in modeling of the breakup frequency in viscous subrange. The breakup frequency and Gaussian distribution are given
by

(2.66)

b(R)= @P(Aum)

' i (2.68)
1 (Au)
P(Au)= exp|—
(Au) oo p 207
The variance o and the mean velocity difference assuming it is the first order moments of |Au| are given by
ou\’
2 2 2
o, =((Au)" )={(|— | )D;
2 =((aw?) <(ax]> ;
(2.69)
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Therefore, the breakup frequency for viscous subrange is given by

2 1/2 c 1/2 1 c
b,,h,R,q,(R,-):(—j (—) eXP(——L”J (2.70)
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The hydrodynamic stress on a droplet surface due to the viscous force can be characterized by Capillary number,
Ca, which is the ratio of the stress due to the continuous phase velocity gradient to the stress on the droplet surface.
The Capillary number is usually used in the analysis of the viscous force acting on the drop without the inertial force.
The classical definition of the capillary number on a droplet radius R; is given by

Ca= 2 @.71)
o
where u is the suspension flow viscosity, G is the velocity gradient, and ¢ is the surface tension. The breakup can be
thought as it is occurred when the Capillary number exceeds the critical Capillary number Ca; [39]. The critical
Capillary number depends on the flow type and the viscosity ratio between a drop and suspension flow u,/ 1 [40]. The
velocity gradients induced only by the viscous force in viscous and inertial subrange is given by

G ~ iﬁ 1/2
Ri<np — 15 v
1/3
&
Gron :1'37[41{?}

respectively. Therefore, the critical energy dissipation rate corresponding to the critical Capillary number in viscous
and inertial subrange is given by

(2.72)

2
Eerit, R<n = 15_72'7/[—6Cam.t} R (2.73a)
vit, R, > "
3
4 O-Cdcrit =
Em.h R‘ > = W[TJ R/, 1 (2.73b)

respectively. Due to the lack of experimental data, the critical Capillary number is obtained from the results of
immiscible fluids experiment in a simple shear flow. Cristini et al. [41]’s numerical result gives that the critical
Capillary number is approximately 0.46 at the 1.3 viscosity ratio which approximates the condition inside the
combustion chamber.

2.3.2.2 Turbulent flow - Aerodynamic breakup
The breakup mechanism of liquid drops in a gas suspension is usually characterized by the aerodynamic forces (or
inertial forces) based on the relative velocity between the gas and droplet. The non-dimensional parameters used in the

breakup due to aerodynamic forces are the Weber number and Ohnesorge number given as follows:
e — 2
plU-U,.il D,
_Aun

- Jobo

The Weber number is the ratio of the fluid inertia to the surface tension and Ohnesorge number is the relative

We (2.74)

importance of the viscous forces to inertial and surface tension forces. Here, ‘U —U,,;

is the velocity difference

between the droplet i and surrounding. The degree of deformation and breakup is determined by these parameters.
According to Hsiang and Faeth [42], there is no breakup observed when the Ohnesorge number is larger than 4.
Because this is not our case (the Ohnesorge number of Al/Al,O; particles in a chamber is typically smaller than 4
under high temperature condition), the Weber number becomes the only parameter relating with breakup. The breakup
occurs when the droplet Weber number is larger than the critical Weber number. Thus, the slip velocity,

Au = ‘ﬁ - ﬁp,i‘ , corresponding to the critical Weber number is given by
172
We o
Au =] —<— (2.75)
s,crit 2pR

The aerodynamic breakup frequency for both of viscous and inertial subrange is assumed to be given by the
following using the aecrodynamic particle break time and the breakup efficiency corresponding to the critical velocity
difference:

ba(Rl_)zc £ ﬂexp{—hj (2.76)



where the constant C is obtained from the empirical correlation for the breakup time given by Hsiang and Faeth [42].
The constant C is given by

C = for Oh<0.1

1
5
1(. Oh

= 5(1—7) for We<10°, 0.1<Oh<3.5

Following Levins and Glastonbury [28], the slip velocity Au_ can be related to turbulence parameter. They have

(2.77)

started from Tchen [27]’s force balance equation between a drop and surroundings and the applicable drops are not
limited by their relative time scale to the time scale of the smallest eddies. In contrast to Williams and Crane [24] who
used a stokesian particle assumption, Levins and Glastonbury [28] used actual drag coefficients corresponding to drop

size classes can be used here. Following their approach, the mean square slip velocity ¢° = <(ﬁ -U » ) . (U -U » )> for a

random turbulent fluctuation case is given as follows assuming the exponential form of the Lagrangian correlation
function [28]:

. :(1_ 3p ]2 202p, + p)R (u?)” -
2p,+P) | 3pCpql +202p, + pIR, (u*) '
Here, L is the integral length scale of the largest energy-containing eddy defined in above chapter. The root mean
square fluctuating velocity <u2 >1/2 is given by (2k/3)"* in isotropic turbulence. Therefore, the mean square slip
velocity ¢° can be obtained by solving the above equation numerically. Assuming the Gaussian distribution of relative

velocity, the slip velocity Au can be given as (2/7r)1/2q by calculating the first order moment of ‘6—5 | -

Newton’s method or bisection method is used here. The drag coefficient is given by [43]

C,=27/Re}™ for Re, <80
= 0.271Ref}'217 for 80<Re, < 10* (2.79)
=20 for Re,>10*

where Re = pAu D / u. The appropriate critical Weber number for Al,O; is found in Caveny and Gany [43] which
p s i

is given as 28. The larger breakup frequency is chosen comparing the breakup frequencies induced by viscous and
inertial force (comparing hydrodynamic and aerodynamic breakup) for both of viscous and inertial turbulence
subranges.

2.3.2.3 Laminar flow - Hydrodynamic breakup
Following the same approach given in hydrodynamic collision frequency model in laminar flow, the average
velocity difference across a droplet of radius R; using the Euclidean norm of rate of stress tensor is given by.

AU =R.[8 s, +2s% +5% (2.80)

Once the velocity difference AU across the droplet is obtained, this can be used in the hydrodynamic breakup
model. The hydrodynamic breakup model in laminar flow is given by

AU? AU .
b, (R)= - i 2.81
I,h( ) R exp[ AU ] ( )

The critical velocity difference across the droplet AU, can be obtained in terms of the critical Capillary number

rit

Ca,,;; as follows:

=it (2.82)

2.3.2.4 Laminar flow - Aerodynamic breakup

Using a fast (or equilibrium) Eulerian approach, the velocity of particle phase can be obtained then the mass and
momentum conservation are no longer needed to be calculated. Fundamentally, this will allow us to consider slip
between phases in the model and the resultant aerodynamic forces on droplets that may or may not lead to breakup. In
the fast Eulerian approach, the particle phase velocity is handled as a field variable with a limitation of small size and

large density of particles and the relative velocity between the particle and the surrounding fluid is given by
. DU
U, -U=—122 2.83
0=U, Dr (2.83)



where U, and U are the particle phase and gaseous phase velocity vectors, respectively. The term 7 is the relaxation
time of the particle and D/ Dt is the material derivative in Eulerian view point. In analogy with Saffman and Turner
[21], assuming that the carrier fluid velocities near two adjacent particles are same, the velocity difference of the
carrier fluid between two close point is neglected (this velocity difference is already considered in the previous chapter)
and then the relative slip velocity between two particles is given by

éz _él :(71 _72)%

Once the slip velocity (AU =‘§‘) is obtained, the modeling of aerodynamic breakup in laminar flow can be

(2.84)

considered using the aerodynamic breakup frequency function:
1/2

p | AU AU

b =C|*— S exp| ——% (2.85)
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where the constant C and critical slip velocity are given by [42]
C = é for Oh<0.1
. O (2.86a)
= 5[1—7j for We<10’, 0.1<Oh<3.5
1/2
We o
AU =] —— (2.86b)
s,crit 2pR

in terms of critical Weber number, We.,..

2.3.3 Coalescence efficiency

As Salita [44] explained, the assumption that all collisions result in coalescence has usually been used in the
multiphase simulation of rocket combustion chamber. However, many prior studies (i.e., Ashgriz and Poo [45]) have
shown experimentally that all collisions of two water drops does not result in coalescence. Four different types of
collision outcomes were observed in the experiments as it is explained previously: bouncing, permanent coalescence,
temporary coalescence followed by separation and temporary coalescence followed by a set of satellite drops. In
bouncing mode, the drops are reflected in the reverse direction of their approaching velocity due to the effect of the
fluid film between the drops. The permanent coalescence refers to the creation of stable drops after the drops are
merged. The temporary coalescence with separation is when the merged drop is unstable and the merged drop is
separated into two or more drops. The temporary coalescence with satellite drops is similar to separation mode but it is
disintegrated into a set of very small satellite drops. Although the last three modes concern the phenomenon after the
drops are contacted each other, the first bouncing mode concerns the drops before they are contacted.

Due to the absence of the coalescence model of metal droplets (Al or Al,O; in the rocket propulsion), Salita [44]
was motivated to perform a series of coalescence experiments using mercury drops, whose the density is 13.5 times
and surface tension 6.5 times bigger than water drops at room temperature. By using the mercury drops, they can
provide surface tension values near that of Al,O;. To compare the coalescence model with the experimental results,
they have used the water drops coalescence model of Brazier-Smith et al. [46]. The model of Brazier-Smith et al. [46]
postulates that the collision of drops always result in the unstable coalescence and then the merged drop will be
separated into the same size of incident drops if the rotational energy of the merged drop exceeds the surface energy
holding it together [44]. They concluded that the coalescence model of water drops accurately predicted that of
mercury drops. The coalescence model of water drops is used here.

The processes of permanent coalescence and disintegration are described in Figure 2.8. Considering two particles
of radii 7; and r;, the moving particle is the particle of radius r; supposing the particle of radius r; as a fixed particle. A
temporally formed agglomerate sphere due to the collision has a mass m+m; and the corresponding radius

=+ rf ). The resulting rotational energy of the temporal agglomerate from the induced angular momentum by

the impact of moving particle to the fixed particle is given by

2.6_6
2xrr,

Z (2.87)
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Here the separation is assumed to occur in the way that only two product droplets which have the same size as the
original two droplets because Brazier-Smith et al. [46]’s experimental results for water droplets have shown a good
agreement with the modeling using this separation model. The energy required to separate the temporal agglomerate

—
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into droplets of radii rn' is given by
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(2.88)

Thus, in case of separation into the two droplets which have the same size as the original two droplets is given by
E, =4no r’ +r' —R’ (2.89)

S.s i J 0
Therefore, the permanent coalescence occurs when Ey < E, and this condition gives that
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Defining the coalescence efficiency as the ratio of collision cross section (zx”) to the maximum available collision
cross section 7R’ , the coalescence efficiency is given by:
.
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where p), is the density of the droplet, and o is the surface tension of droplet.
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Fig.2.8 Schematic of coalescence and separation processes of collision between two droplets of
radii »; and r;

2.3.4 Collision efficiency (Bouncing efficiency)

Following Coulaloglou and Tavlarides [7] and Tsouris and Tavlarides [8], the drop collision efficiency can be
characterized by two terms; contact time and collision time. The contact time is the time of two drops staying together
after they collided. The collision time is the time required for the drainage of liquid or gas films between two drops. If
two drops are staying together after they collided for enough time for the film drainage, the collision of two drops
occurs. Therefore, the collision occurs when the contact time is larger than the coalescence time. The function of the
coalescence efficiency derived by Ross [47] is given by Tsouris and Tavlarides [8] as follows:

T 2 0' ~Tt
a :%exp(—zjexp(z o jerf \/_ (2.92)
t

i t 2 tGT

where 7 is the average contact time, T is the average coalescence time, and o, is the standard deviation for the

coalescence time. This equation can be simplified by assuming that o, is zero as follows [8]:

a = exp(—zJ (2.93)
y t

Considering the liquid droplets in gaseous fluid system, the deformation of the interface between two droplets is
supposed to be significant unlikely to the solid particles in fluid. Thus, assuming the deformation of the interface is
significant, the parallel-film approach can be used in this system. The Figure 2.9 illustrates the idealized deformation
of the interface in the parallel-film approach.
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Fig.2.9 Schematic of idealized collision process between two deformable
droplets of equal radius R,,

Based on the classical lubrication theory, the film drainage process can be described by two equations given by
[48]

g( phr)+ ai(U phr) =0 (continuity equation)
' d (2.94)

OP .
= +12 ,uh—z’” =0  (r-momentum equation)
r
where p is the gas density, u is the dynamic viscosity, U, is the gap-averaged radial velocity of draining flow, and P is
the gap-averaged pressure. Considering incompressible gas flow (p is constant), two governing equations can be

solved for the pressure in the gap between two spherical drops as follows:

h
P(r,t)=-3ur’ i (2.95)
Neglecting Van der Waals attraction and electrostatic double-layer repulsive force, the balancing of inertial force by
suspension flow and dynamic force exerted by the pressure inside the gap closes the system. The force balance

equation is given by

3gur’
F— s Z 0 2.96
2 K (2:96)
where F is the compressive inertial force. Following Chesters [23], the amount of deformation is related to the
compressive inertial force as follows:
F=nr [2—C’J (2.97)
S| R
eq

Thus, eliminating the radius of the interfacial circle », from the force balance equation, the rate of film thickness
change is expressed by
dh 8 o’ e

an_° 2.98
dt 3/1R;F (298)

Consequently, assuming the constant force F, the calculation of the time required for film drainage when the drops

deform is given by
fziﬂ_i[L_LJRz 2.99)
;

where the 4,and h, is the final gap distance and initial gap distance between particles respectively. This collision time
is also used in Coulaloglou and Tavlaride [7].

Here, F is the force acting on either ends of two adjacent drops. By assuming the force is propotional to the mean
square velocity difference at either ends of the drops, Coulaloglou and Tavlarides [7] have used the following
expression for turbulent flow:

F=pR <Au2(2Rc)> (2.100)

where <Au2 (2R>)> is the velocity difference across the distance 2R, in the turbulent flow. They have assumed that the

proportionality constant in this equation is unity following Rotta [32]. Similarly, the following equation for the force
acting on either ends of two adjacent drops (at a distance of 2Rc¢) in laminar flow is used:
F=pR*AU*(2R) (2.101)
eq c

where the average velocity difference is obtained from Eq. 2.79 at a distance of 2R.. The velocity differences in
viscous subrange and inertial subrange are given by
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respectively. Therefore, F for viscous subrange and inertial subrange are given by

4 (¢ 2
Fo 07157 [Cj(Rech) (2.103a)
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Req >n

respectively. The final gap distance /4, between particles which is set as 300 armstrong meters which is the minimum
of reasonable film thickness appearing in Coulaloglou and Tavlarides [7] and the initial gap distance /4, is set as 0.1R,,
following Tsouris and Tavlarides [8]. The contact time for the viscous subrange and inertial subrange is set as
Kolmogorov’s time scale and Taylor’s micro time scale, respectively. The contact time for the viscous subrange and
inertial subrange is given by

y 1/2
7 = (’_j (2.104a)
Rﬂl <n &
1/2
r = (15—”} (2.104b)
qu >n &

respectively. Following Chesters [23], the contact time for laminar flow is given as follows:

1/2

4p pR’
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7= (2.105)

2.3.5 Implementation of the mean velocity effect in turbulent flow
The mean velocity effect in turbulent flow on the collision process can be obtained by using decomposition of the
relative velocity between two particles which is suggested by Saffman and Turner [21] as follows:

—2 — — 2 — — 2

(i >:< 5.-0, >+< 0. -0, > (2.106)
Here, the square means the dot product. Using the Reynold’s decomposition, the mean square relative velocity
between particles becomes

<W2>: <§2>_<§1> 2+< 4% 2>+ <52>—<51> 2+< Uy =y 2> (2.107)

The lower cases g and u are fluctuating parts of the slip velocity and the surrounding fluid velocity. The first and
third terms on the RHS are given by Egs. 2.61 and 2.79 respectively (the average velocity difference across at a
distance of R. is obtained from Eq. 2.79). The sum of second and fourth terms is obtained from Eq. 2.49 for viscous
subrange and Eq, 2.53a for inertial subrange (the fourth term is neglected in inertial subrange). This velocity
difference is used to calculate the coalescence efficiency in turbulent including significant mean flow effects by
putting the above equation into Egs. 2.90. In case of collision efficiency, it is assumed that the force is propotional to
the mean square velocity difference at either centers of the drops. In addition, the minimum value between the
collision and coalescence efficiencies.

Also, the calculation of mean square velocity difference across a droplet <(AU )2> and the mean square slip

2
velocity <(AU)> is important. Relaxing the assumption of constant mean velocity and using Reynold’s

decomposition, these terms can be given by

(aU)") = (AU +((au)")
<(AUX )2>: (aU >2 T <(AuS )2>

(2.108)

respectively.



Additionally, the key parts of implementation of mean velocity effect in collision/breakup process are the
calculation of collision and breakup frequency function. It is commonly assumed that the collision mechanisms due to
Brownian motion, fluid shear, and differential sedimentation are independent from each other and the collision
frequency functions are additive [49]. The collision induced by differential sedimentation is very similar to
aerodynamic collision because the source of the collision is the velocity difference between two drops induced by
different response of each drops to their surrounding fluid. It is further assumed here that the collisions induced by
laminar and turbulent flow are independent. Thus, the sum of collision frequency functions of laminar hydrodynamic
collision, laminar aerodynamic collision, and turbulent collision is used for the total collision frequency function. In
case of breakup frequency, the maximum value between laminar hydrodynamic breakup, laminar aerodynamic
breakup, and turbulent breakup is used for the calculation. The summary of equations used for collision and

coalescence efficiencies, and collision and breakup frequency function is provided in Table 2.1.

Table 2.1 Summary of equations used for collision/coalescence efficiencies and collision/breaku

p frequency functions

Laminar Turbulent Turbulent with
mean flow effects
Eq. 2.92 Eq. 2.93
Viscous Inertial ) t.he Veloc1j[y
difference is
. Eq.2.93 obtained from Eq.
Cﬂ?“.ls“’“ - Egs. 2.99, 2.101, and Eq. 2.108
cihciency 2.105 are used Egs. 2.98, 2.103a, Eqgs. 2.99,2.103b, | - the contact time is
and 2.104a are used | and 2.104b are used | a5sumed as the sum
of laminar and
turbulent
Eq. 2.91
- the amounfc()lf ?jaltive velocit i - i Eq. 291
Coalescence | . . y Viscous Inertial -the relative velocity
. is obtained from the sum of Eq. . .
efficiency 7.0 di fR and th is obtained from Eq.
.60 at a distance of &, and the Eq. 2.49 used Eq. 2.53a used 2107
absolute value of Eq. 2.61
Collision Hydrodynamic | Aerodynamic Viscous Inertial Sum of Eq. 2.60,
frequency 2.63, and 2.51 or
function Eq. 2.60 Eq. 2.63 Eq. 2.51 Eq. 2.53b 2 53h
Hydrodynamic | Aerodynamic Hydrodynamic Aerodynamic
Breakup Viscous Inertial Maximum between
frequency Eq. 2.70 Eq. 2.67 Egs. 2.81, 2.85,
. Eq.2.81 Eq. 2.85 q. < q- 2 Eq. 2.76
function q a _Eq 2.73a _Eq 2.73b q 270, 267, and 2.76
used used




II1. Results

3.1 Problem Statement
3.1.1 Baseline geometry

A series of simulation was performed to validate the code comparing the results to Crowe et al.[50]’s experimental
results and Hermsen’s correlation. Crowe et al.’s nozzle has a length of 5.2 cm and a inlet radius of 1.587 cm. The
throat is located at 2.113 cm downstream from the inlet and its diameter is 1.27 cm. The corresponding area ratio of
the throat to the inlet is 6.246 and the ratio of the throat to the exit is also 6.246. The figure 3.1 illustrates their nozzle
geometries. They also performed the experiments measuring the particle diameter at the chamber without the nozzle
attached by pressurizing the collection chamber to a certain level. The particles collected from the motors containing
16% Aluminum particles had the mass mean diameter of 0.74 pm and the standard deviation of 0.456 on pressure over
150psi with only slight variation of values. Because we can obtain the parameters of their experiments required to
perform simulations from Crowe and Willoughby[52], we decide to perform simulations under their experimental
conditions.

A series of simulations was also performed to compare the results to the correlation under the nozzle configuration
used by Shegal[53] for 150psi chamber pressure. His experiments performed with Polyurethane-type solid propellants
containing 12% aluminum. The motor dimension is 5 inch outer diameter by 6 inch long with a circular port of 2 inch
diameter. The conical convergent nozzle is attached to the motor and the chamber pressure was changed by adjusting
the throat diameter. He obtained the particle size information at the nozzle exit (or nozzle throat) by firing motor into a
tank. He reported the size data from the particles attached to tank wall.

The particle size information in the motor of Shegal can be obtained from Fein[54]. While holding the chamber
pressure 150 and 500 psi by pressurizing the tank to the desired level, the motors without the nozzle are fired into the
tank. The measured MMD of particles were 0.79 and 2.39 um for 150 and 500 psi chamber pressures, respectively. At
these chamber pressures, the measured MMDs at the nozzle exit were 1.5 and 3.5 um, respectively.

In order to reduce the error due to the fast Eulerian assumption, we choose the nozzle geometry for Shegal’s 150

psi case. The large particle diameter gives the large relaxation time (7= 2p, + p, ¥ /94 ), then it can lead the large

amount of error in the particle phase velocity, U » . According to Ferry and Balachandar[18], the particle phase

velocity can be obtained from the fast Eulerian approach within the reasonable error bound when the relaxation time is
less than the fluid time scale which is defined by the inverse of the maximum of absolute compressive strain). Thus,
the difficulty specific to the fast Eulerian approach arises, which is that this approach can produce negative values of
particle phase velocity. To overcome this difficulty, clipping has been used. The fast Eulerian approach can be
replaced by solving momentum equations for the particle phase to obtain more accurate particle phase velocity.
However, it is out of our concerns for the computational efficiency.

Because Shegal did not provide the detailed geometrical information, we performed the isentropic analysis and
obtained the nozzle throat diameter. To account for the particle size variation in the diverging section and compare the
particle size data at the nozzle exit, the conical diverging section with a 18 deg half angle. In addition, the nozzle exit
diameter is chosen according to the perfect expansion assumption at the sea level and it gave the shock wave free
condition inside the diverging section.

Figure 3.2 highlights a typical axisymmetric unstructured mesh used in the computations. The nozzle has a length
of 154 cm and a inlet radius of 6.35 cm. The throat is located at 12.6 cm downstream from the inlet. The
corresponding area ratio of the throat to the inlet is 30.57 and the ratio of the throat to the exit is 2.43. The inlet
geometry is horizontally smoothed out to remove additional disturbances caused by sharp geometry. A simulation is
performed in a typical axisymmetric unstructured mesh form. The physical time consumed during a test case
simulation is about four days using 4 cpus a time stepping by maximum CFL number in the message passing
environments.
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Figure. 3.1 Schematic of the test nozzle geometry for Crowe et al.’s experiments (245x80 cell mesh)

Figure. 3.2 Schematic of the test nozzle geometry for Shegal’s experiment (265x80 cell mesh)

All our current simulations are running on our current HPC (High-performance computing) cluster. The hardware
configuration of the HPC cluster is presented in Table 3.1. The software used for the calculation is presented in Table
3.2.

A non-slip boundary condition is imposed at the nozzle wall and a pressure inlet and supersonic outlet condition is
set as boundary conditions. The inlet kinetic energy & and specific dissipation rate ® are set as sufficiently small
values. The gas mixture properties are summarized in Table 3.3. These properties are obtained from the properties for
solid propellant rocket simulations of Lupoglazoff and Vuillot [56] and Najjar et al [2]. The inlet temperature is
obtained from Fein[54]. Sutherland’s law is used for the viscosity rather than the constant viscosity assumption with

the reference temperature 7,.,and Sutherland’s constant S,., given in Table 3.3 and it is given by
3/2

1 ef ef
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Table 3.1 Hardware configuration of current HPC cluster

o . Total
Hardware Description Quantity
CPU Head node 2.0 GHz AMD Opteron Quad Processor 1
Computing nodes | 2.4 GHz AMD Opteron Quad Processor 56
Head node HP ProLiant DL385 1
Motherboard
Computing nodes HP ProLiant DL145 56
Head node 8 GB
Memory : 284 GB
Computing nodes 13 nodes — 8GB, 43 nodes — 4 GB
Head node 1.2 TB
Storage - 5.7TB
Computing nodes 80 GB
HP ProCurve 5406zl (10 GB Interconnection support) 1
Switch
HP ProCurve 5400z1 (10 GB Interconnection support) 1

Table 3.2 Software used for calculation

Software Description

Operating system RedHat Linux 7.2

PGI Compiler 7.1-2 by Potland Group
Cluster Development kit

MPI MPICH2 1.0.5

Fortran Compiler

Table. 3.3 Gas mixture properties and pressure boundary conditions

Quantity Value
MW (kg/kmol) 27.76
C, (J/kg - K) 2439.04
Urer (kg/m - s) 36.0e-05
Tinter = Tref (K) 3279
Srer (K) 120
P;, (N/m?) according to simulation cases
P, (N/m’) 101325

3.1.2 Particle phase properties and boundary conditions
The density for the particle phase is obtained from Al,O; density relationship given by Najjar et al. [2] as follows:

p =5632-1.127T  (kg/m’) (3.2)

P

where T is in deg. K. Due to the limited available data, a surface tension and dynamic viscosity of liquid Al,O; are
obtained from Hatch [57] for molten Aluminum instead of Aluminum Oxide. The surface tension and dynamic
viscosity of molten Aluminum are given by

0 =0.868—0.000152(T-T ) (N-m™)

4 =0.0001492exp(1984.5/T) (N-s/m?)

P

where T, is the melting temperature of Aluminum and it is given as 933.47 K.

(3.3)



The mass mean diameter (or Herdan’s mean diameter) D,; can be obtained from the weights and abscissas which
is calculated by

N

4

m Z:l’Z_D_4 Zwili
D _ LA 11_\/1

_
- - 3
B m EnD 3
3 i Ew_l_
11
i=1

(3.4)

The purpose of the current study is to simulate and investigate the coalescence/breakup processes in the typical
converging/diverging nozzle. The coalescence/breakup processes are sensitive to the distribution of particles. The log-
normal particle number distribution or exponential distribution can be used following Najjar et al. [2] and Fein [54],
respectively. Najjar et al. have referred other researcher’s finding of lognormal and bimodal size distribution of
droplets entering the chamber from the solid propellant surface. Gany et al. [1]’s experimental results of the
distribution of the droplets leaving the propellant surface is close to a lognormal distribution. The model proposed by
Fein [54] is the exponential distribution rather than lognormal distribution. Fein compared his modeling with the
experimental data performed by Shegal and the good agreement between the model and experiment is obtained.

Thus, the lognormal distribution is given by

2

dl_l 1 (lnD—lnD)
D)= = - m 35
F(D) dD JZDa_eXp 207 (3-5)

s

where dn is the number fraction of drops in a given range dD, o is the standard deviation, and D,, is the mean drop

diameter. The transformed coordinate by ’=v (where v is the volume of a drop) can be expressed as /=D according to
DQMOM approach and the distribution of / is also lognormal distribution. Therefore, the moments are given by

mz - ntotalJq dﬁ(l)lZdZ

— 3.6
7l (3.6)
The analytical expressions for the raw moments of lognormal distribution are given by
m =n”lexp(zlnD +zza?/2) z=0.....2N -1 (3.7)
The exponential distribution modeled by Fein [54] is particle volume distribution which is given by
2 1/3
f(v):—exp[— 6v/V } (3.8)
y3 (6\/)2/3 ( n)

where V, is the number average particle volume. Therefore, the volume distribution needs to be converted to size
distribution. Assuming the spherical droplet, the size distribution is obtained as follows:

f()=f(D)=3a D*f(v)

13 (3.9)
= Aexp[-AD] where A= (7z v )

where 4 is the rate parameter and a, is the shape factor for the sphere which is given by n/6. The analytical expressions
for the raw moments of exponential distribution are given by

m =n (z1/4) z=0.....2N -1 (3.10)

z tota

The raw moments of inlet particle distribution are used to find weights (w, ) and abscissas (/,) from the PD algorithm.

To use these two distributions as an inlet condition, two and one variables should be known for lognormal and
exponential distributions, respectively. As described above, we chose Shegal’s nozzle configuration used for 150psi
chamber pressure. Thus, we used his experimental results for particles in the chamber as a nozzle inlet condition.
According to Fein[54], while holding the chamber pressure 150 psi by pressurizing the tank, the motor without the
nozzle gives that the rate parameter 4 is 4858099.849 1/m and Dg; is 0.79 um. However, due to the slight disturbance
occurring in PD algorithm, the calculated value of D4; using this rate parameter is 0.78 um. To remove this
undesirable effect from PD algorithm, the rate parameter is slightly adjusted and is set as 4804660.751 1/m. This
adjustment will not deviate the results significantly. Finally, the particle concentration &, is given by 0.24 assuming
that all of Aluminum in the propellant is converted to Aluminum Oxide.



3.1.3 Experimental results by other researchers

Although the current model has an ability to predict the drop size distribution inside the rocket chamber and
nozzle, it is hard to validate the code due to the lack of experimental data of drop size inside the chamber. The high
temperature and high velocity conditions in the rocket chamber and nozzle make it difficult to measure the particle
size. Until now, the experiments are performed to measure the particle size at the exit plane of nozzle (i.e.
Sambamurthi [58]) and lots of empirical correlations are developed to predict the particle size at the exit as it is
described by Hermsen [10]. Thus, we decide to validate the predicted particle size data at the nozzle exit with the
empirical correlation. The empirical correlation which is widely used in the solid rocket industry is Hermsen’s model
[10] for the Aluminum Oxide particle size:

D, =3.6304D">" (1 ~exp(-0.0008163¢ Pz )) (.11)

43

where D, is the mass mean diameter (um), D; is the nozzle throat diameter (in.), & is the particle concentration in the
chamber (gmol/100 g), P, is the chamber pressure (psi), and z, is the average particle residence time in chamber (ms).
The average chamber residence time is given by

T =pV /Im (3.12)
where p, is the gas density in chamber (kg/m®), ¥, is the volume in chamber (m®), and s is the propellant mass flow
rate (kg/s). Because the current DQMOM modeling uses the total number of particles, 7,,,, instead of the particle
concentration, ¢, the total number of particles can be obtained using PD algorithm. After the weights (w,) and

abscissas (/,) are obtained by PD algorithm for a certain n,,u, @ . corresponding to a given &. is calculate by trial
and error method on the following equation:
N cp ,M
S wl= 0 T mo (3.13)
- i 100r p

AIZO3

where M is the molar mass of Al,O3 (g/mole) which is given by 101.94 for the current study. According to

Hermsen[10], the standard deviation of the correlation is 0.298 and it is corresponding to a deviation of Dg; of about
+35% due to the data scatter obtained from various collection and measurement techniques.

To validate the modeling, we compared the predicted results to Crowe et al.’s experiments. In addition, the
simulation is validated by comparing it with Hermsen’s correlation. Therfore, we constructed one test matrix for
Crowe et al.’s experiments and three different test matrices by varying the chamber pressure, particle concentration,
and, nozzle scale for Shegal’s cases. Tables 3.4-7 summarize the inlet conditions for gas and particle phases and
nozzle scales.

Table. 3.4 The particle phase inlet boundary conditions — for Crowe et al. [50]’s experiments

Case no. C-1 C-2 C-3
D, 0.5
¢e 0.277
P,
(chosen to compensate pressure 470 650 980
variation according to Hermsen [10])
T, 15
Pyotal 7.61el5 10.57el5 | 15.93el15
D, 0.361
Oy 0.456




Table. 3.5 The particle phase inlet boundary conditions — chamber pressure variation

Case no. P-1 P-2 P-3 P-4 P-5 P-6
D, 0.904

¢, 0.240

P 150 | 250 | 350 | 450 | 550 | 650
T, 4.15

Hiora 5.08el5 | 8.43el5 | 11.83el5 | 15.22¢15 | 18.6e15 | 22.0el5
p 4804660.751

Table. 3.6 The particle phase inlet boundary conditions — particle concentration variation

Case no. M-1 M-2 M-3 M-4 M-5 M-6
D, 0.904

3 014 | o016 | o018 | 02 [ 022 0.24
P, 550

T, 4.15

Mow | 10.85¢15 | 12.4e15 | 13.95e15 | 15.5¢15 | 17.04el5 | 18.6el5
) 4804660.751

Table. 3.7 The particle phase inlet boundary conditions — nozzle scale variation

Case no. S-1 S-2 S-3 S-4 S-5 S-6
D, 0.904 1.808 3.616 5.424 7.232 9.04
& 0.240
P, 550
T, 4.15
Nyotal 18.6el15
A 4804660.751




3.2 Grid convergence study

The grid convergence study was performed on the geometry given in above section for Shegal’s 150 psi case. The
chamber pressure is 150 psi and the total number of particles at chamber is 2.612¢15. The mass mean diameter at
chamber is 0.79 um and the corresponding rate parameter of exponential distribution is 4804660.751 using PD
algorithm. The grid sizes used are 132x60 and 265x80. We are also performing the simulation on 381x100 grids, but it
requires exceptionally long time to get the converged solution (approximately 30 days) so it is not included here. The
results of grid convergence study are given in Fig. 3.3 and 3.4 for the mass mean diameters. The mass mean diameters
monitored along the wall and axis are given in Fig. 3.3 and values measured at nozzle exit in radial direction are given
in Fig. 3.4.

It is easily seen that the mass mean diameters in Fig. 3.3 are slightly sensitive to the meshes studied. The mass
mean diameter varies slightly after the throat following the axis and it has slightly larger value on 265x80 than 132x60
following the wall. However, the mass mean diameter differences between two cases are approximately less than three
percent. In addition, there is slightly discernable difference of mass mean diameters at nozzle exit between two cases.
This difference is observable in Fig. 3.4 at the center and wall but the amount of difference is still under three percent.
It looks like that the grid should be chosen carefully at around the center line after the throat and the wall for more
accurate prediction. However, these differences do not result in the averaged value of particle size at nozzle exit as it
is shown in table 3.8, because the differences present only in very tiny regions. The averaged mass mean diameters at
nozzle exit plane of two cases are 0.878 and 0.879 um.

Table 3.8 Averaged particle characteristics at nozzle exit planes

Grid size. 132x60 265x80
Dy 0.213 0.213
Dy 0.878 0.879
D, 0.168 0.168
o 0.687 0.687
T T I T T T T I 1 T Ll T I I T 1 T
1= -emmee--- 132x60 - Axis -
| 265x80 - Axis |
——— - 132x60 - Wall
B — — — = 265x80-Wall 1

Mass-Mean Diameter, dy; (um)

-0.1 -0.05 0 0.05

Axial distance from the throat, x (m)
Figure 3.3 Axial variation of the mass mean diameter along the wall and axis
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3.3 Results and discussions
3.3.1. Comparison between the prediction and Crowe et al. [S0]’s experiments

A series of simulations was carried out to predict mass mean diameter at nozzle exit in the nozzle configuration
given by Crowe et al.[50]. As described above, the small solid rocket motors are fired into the collection tank with the
nozzle [50] and without nozzle [51] to assess the particle conditions obtained directly from the chamber. Ther results
are presented in Figure 3.5. The chamber pressure was changed by varying the propellant burning area with a fixed
nozzled attached. The experimental chamber pressures are approximately 320, 570, 900, and 1000 psi. According to
Crowe et al. [50], they observed the chamber pressure variation during test, therefore, we chose the pressure values
from Hermsen [10] to account for the pressure variation. The chamber pressures of simulations are 470, 650, and 980
psi and the corresponding case numbers are from C-1 to 3, respectively. The averaged mass mean diameter at nozzle
exit plane is obtained from the simulation. The predicted results are presented in figure 3.5 and we observed a good
agreement between the measured and predicted particle size over 500 psi chamber pressure. In case of 650 psi
chamber pressure, the predicted mass mean diameter is slightly smaller than the minum experimental value at 570 psi
chamber pressure. However, the mass mean diameter used in the simulation, 0.74 um, corresponds to the lowest
measured mass mean diameter directly obtained from the motor. We expect to obtain the larger mass mean diameter
using the maximum measured mass mean diameter in the spread. At the lower pressure level, 470 psi, the predicted
mass mean diameter is approximately 30% less than the measured value at 320 psi. Although the other collision
mechanisms which are not included in the modeling might be significant in this range, the predicted value is still in 35%
error range of Hermsen’s correlation.
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3.3.2 The effect of chamber pressure

The current modeling described previously was compared here to Hermsen’s correlation and the dependence of
mass mean diameter on the chamber pressure level was analyzed. A series of simulations was performed to compare
the results to the correlation under the nozzle configuration used by Shegal[53] for 150psi chamber pressure. The
corresponding case numbers are from P-1 to 6.

Figures 3.6-9 show the effect of the chamber pressure on the mass mean diameter along the axis and wall, and at
nozzle exit plane. Figure 3.6 shows that the largest growth rate ocurrs in the convergent section, specially, the most
growth occurs in short region in front of the nozzle throat. The mass mean diameter after passing the throat shows
little growth in divergent section. The breakup mechanism due to velocity lags might be balanced with collision, then
the mass mean diameter approaches a certain value in this region.

Figure 3.7 shows the variation of mass mean diameter in the boundary layer and it shows more complicated
variation than centerline case. It is observed that there exist three peaks for all cases. The first peak corresponds to the
region which the geometrical compression starts from. At this corner, the significant shearing motion of mean flow
occurs due to the recirculation then it is responsible for the growth of particles. This finding is significant since it
explains the importance of smooth geometry. The second peak corresponds to the maximum mass mean diameter
regions formed by turbulence motion. Here we did not include the results obtained using only turbulent
collision/breakup mechanism, the maximum mass mean diameter occurs at this region as we reported it in the
previous report. The interesting results about this peak, the collision effects due to turbulence motion are less effective
with larger chamber pressure (or collision due to mean flow is more effective than turbulence motion). It is clearly
observed that the area taken by this peak is wider with low pressure than high pressure case. The third peak is the
location which the breakup process becomes dominant due to the velocity lag. As it is shown in the figure, the
decrease of mass mean diameter at this region is more significant in high chamber pressure case than low pressure
case. The reduction rate is large with high pressure at this region. The interesting observation is that this peak is
located after the throat with low chamber pressure and located before throat with high chamber pressure. Finally, it is
observed that the variation of mass mean diameter in the short region at around nozzle exit.

Figure 3.8 shows the variation of the mass mean diameter in radial direction at nozzle exit plane. It is clearly
observed that the large amount of growth occurs within boundary layer and it occurs more in high pressure case than
low pressure case. However, the mass mean diameter is almost constant in most region in this direction. The growth
occurring within center region is mostly due to the mean flow shearing as the velocity in radial direction increases
radially.

The averaged value of particle size at nozzle exit is summarized in table 3.9 and the predicted mass mean diameter
at nozzle exit is compared with Shegal’s experiments, Crowe and Willoughby[52]’s prediction, and Hermsen’s
correlation in figure 3.9. The predicted results are mostly less than the measured results by Shegal. However, Dobbins
and Strand [55] lately indicated that Shegal’s experimental results did not agree with other measurements. Dobbins



and strand found that the particle size increases by a factor of 1.7 with a ten-fold increase while Shegal’s experimental
results gave increases by a factor of 5 with a ten-fold increase, approximately. Therefore, it may not be meaningful to
compare the prediction with Shegal’s results. Crowe and Willoughby’s calculation considering the slip velocity
between the particle and surrounding and the momentum exchange in collision also had the less values than Shegal’s
results.

The nozzle inlet conditions reported by Fein[54] for Shegal’s 150 psi case are 0.240 of the particle concentration,
4.15 of the particle residence time, and 0.79 pm of the mass mean diameter. Using these initial conditions, the
simulation performed for various pressures and Hermsen’s correlation is calculated. Over all chamber pressures, the
variation trend is much similar to Hermsen’s correlation, but the predicted results are larger than the results from
Hermsen’s correlation. However, the predicted values are within the error bounds of Hermsen’s correlation (35%)
over 500 psi chamber pressure and slightly over 35% under 500 psi. In addition, as explained above, Shegal reported
the larger mass mean diameter than other studies. Because he used the same technique to obtain the particle size
directly from the motor, his results might have a larger particle size than the actual size. Therefore, we expect that the
resultant particle size using the actual inlet particle size may completely fall in the error bounds of Hermsen’s
correlation.

Table 3.9 Averaged particle characteristics at nozzle exit planes

Case no.

P-1

P-2

P-3

P-4

P-5

P-6

0.218

0.224

0.232

0.237

0.243

0.250

0.971

1.125

1.299

1.494

1.693

1.908

0.170

0.172

0.174

0.175

0.176

0.178

0.706

0.733

0.758

0.783

0.805

0.824
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Figure 3.6 Axial variation of the predicted mass mean diameter along the axis
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3.3.3 The effect of particle concentration in chamber

The current modeling described previously was compared here to Hermsen’s correlation and the dependence of
the particle concentration in the chamber was analyzed. A series of simulations was performed to compare the results
to the correlation under the nozzle configuration used by Shegal[53] for 150psi chamber pressure. Increasing the
Aluminum loading in propellants results in the large number of particles in chamber, consequently, it has more
possibility of collision passing through nozzle. The corresponding case numbers are from M-1 to 6.

Figures 3.10-13 show the effect of the particle concentration on the mass mean diameter along the axis and wall,
and at nozzle exit plane. All of figures show the same trends obtained in the chamber pressure variation cases. An
interesting observation from figure 3.11 is that the first peak corresponding to the region of the corner shows very
little variation according to the variation of particle concentration. The third peak is located almost exactly at the
throat.

The averaged value of particle size at nozzle exit is summarized in table 3.10 and the predicted mass mean
diameter at nozzle exit is compared with Hermsen’s correlation in figure 3.13. The variation trend is much similar to
Hermsen’s correlation over all particle concentrations used in simulations, but the predicted results are larger than the
results from Hermsen’s correlation. Below the particle concentration 0.2, the predicted values are slightly larger than
35 % of Hermsen’s correlation and the predicted values are approximately 35% larger than Hermsen’s correlation for
larger particle concentrations than 0.2. As discussed in previous section, Shegal’s results might have a larger particle
size than the actual size. Therefore, we expect that the resultant particle size using the actual inlet particle size may be
within the error bounds of Hermsen’s correlation.

Table 3.10 Averaged particle characteristics at nozzle exit planes

Case no. M-1 M-2 M-3 M-4 M-5 M-6
Dy 0.229 0.232 0.234 0.237 0.240 0.243
Dy 1.274 1.357 1.440 1.524 1.606 1.693
D, 0.172 0.173 0.173 0.174 0.175 0.176
oy 0.756 0.768 0.778 0.788 0.796 0.805
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3.3.4 The effect of nozzle scale

A last series of simulations were performed to assess the effect of nozzle scale on the mass mean diameter using
the nozzle configuration used by Shegal[53] for 150psi chamber pressure. As discussed in Crowe and Willoughby[52],
an increase in nozzle scale gives longer particle residence time in the nozzle, which implies more growth. The
corresponding case numbers are from S-1 to 6.

Figures 3.14-17 show the effect of the nozzle scale on the mass mean diameter along the axis and wall, and at
nozzle exit plane. All of figures show the similar trends obtained in the chamber pressure variation cases. An
interesting observation from figure 3.15 is that the second peak of S-6 shows very large decrease of mass mean
diameter in boundary layer. The second peak becomes more noticeable as the nozzle scale increases. From figure 3.16,
it is observed that the large amount of growth occurs within boundary layer and it occurs more in large scale nozzle
than small scale.

The averaged value of particle size at nozzle exit is summarized in table 3.11 and the predicted mass mean
diameter at nozzle exit is compared with Hermsen’s correlation in figure 3.17. The variation trend is very similar to
Hermsen’s correlation in small scale nozzles, as the mass mean diameter increases with an increase of nozzle scale.
However, it is observed that the mass mean diameter decreases slightly with an increase of nozzle scale in large scale
nozzles. Over all nozzle scales except the mimum of scales, the results are in 35% error bounds of Hermsen’s
correlation.

Table 3.11 Averaged particle characteristics at nozzle exit planes

Case no. S-1 S-2 S-3 S-4 S-5 S-6
Dy 0.243 0.255 0.273 0.284 0.286 2.830
Dy 1.693 1.943 2.261 2.419 2.474 2.437
D,, 0.176 0.182 0.192 0.198 0.199 0.198
o, 0.805 0.823 0.840 0.845 0.848 0.847
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Conclusions

A new model is under development to assess coalescence and breakup processes in rocket combustor and nozzle
environments. The one-way coupled population balance equation describing the change of number concentration by
the modeled particle to particle interactions and aerodynamic forces is solved using the direct quadrature method of
moments (DQMOM). The required parameters to describe the collision and breakup processes are modeled in laminar
and turbulent flow.

The modeling was compared to experiments and correlation with respects to the variations in chamber pressure,
particle concentration in chamber, and nozzle scale. The comparisons show that the predicted mass mean diameters
are in a good agreement with experiments and correlation over 500 psi chamber pressure. The predicted mass mean
diameters also have a good agreement with correlation over 0.2 mole/100 g particle concentration and within all tested
nozzle scales. These results indicate the validity of the current model for particle growth/reduction.

Coalescence is shown to occur in the convergent section leading to the throat, while breakup processes tend to
become important in the throat region and exit cone. In addition, the modeling shows that more growth occurs in
boundary layers than mean flow regions.

The restriction of current model is the necessity of the accurate information on the particle characteristics in the
chamber. Therefore, the analytical techniques accurately addressing the particle size and concentration in chamber
shoud be obtained for more accurate predictions.
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Appendix A — On the Dynamic Response of Rocket Swirl Injectors Part .
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Part I. Theoretical Description of Wave Reflection

and Resonance

Maksud (Max) Ismailov! and Stephen D. Heister?
Purdue University, 701 W. Stadium Ave., West Lafayette, IN 7907

Linear analyses are developed to investigate theoretically how disturbance waves are
reflected and transmitted in the vortex chamber of a classical swirl injector. The de-
pendence of the magnitude of the wave reflection process on the disturbance frequency
is derived, and it is shown that this dependence may exhibit distinct maximum values.
It is explained that the frequencies at which maximum response occurs are termed the
resonant frequencies of the swirl injector. In general, resonant conditions will depend
not only on the geometry of the injector, but also on the particular flow conditions.
In other words, for a given injector geometry, there are specific flow conditions that
may produce resonance. A simple formula is derived for the primary resonance which
corresponds to a 1/4 wave oscillation within the vortex chamber. Two different reso-
nance theories are presented, which vary in their level of accuracy of description of the
flow transition from the vortex chamber to the nozzle. Results are provided for both

of these models.

Nomenclature

1 Graduate Research Assistant, School of Aeronautics and Astronautics, 701 W. Stadium Ave., West Lafayette, IN
47907, ATAA Student Member.

2 Professor, School of Aeronautics and Astronautics, 701 W. Stadium Ave., West Lafayette, IN 47907, ATAA Associate
Fellow.



The

Tn

Uz
Uzn
Uzw

Win

angular momentum constant (C' = uer)
disturbance frequency
27

wave number (lc = T)

wave number in uniform nozzle region

length of conical convergence section

length of nozzle

length of vortex chamber

number of tangential inlets

radius of solid boundary

inflow radius (R;, = R, — R;)

radius of nozzle

radius of tangential inlet

radius of vortex chamber

steady free surface radius at head end, 2 =0
steady free surface radius in uniform nozzle region
steady free surface radius in uniform vortex chamber region
circumferential velocity

axial velocity

axial velocity in uniform nozzle region

axial velocity in uniform vortex chamber region
tangential inlet inflow velocity

angle of solid wall convergence

steady free surface radius at any axial position of internal flow
free surface deflection away from §

wave length

total injector response

angular disturbance frequency

fluctuation value of parameter

steady state value of parameter

amplitude of fluctuation of disturbed parameter

dimensional value of parameter



I. Introduction

Swirl injectors, or simplex atomizers, are used in a variety of applications ranging from agricul-
tural sprays to use within high flow aerospace combustors. In particular, these injectors have seen
wide application in Russian rocket engines and in numerous gas turbine engines. In these applica-
tions, it is well known that the injector can play a role in stabilizing or destabilizing combustion
processes as it acts as an active element within the system; in particular the injector response at
acoustic modes of the chamber is highly critical. Should the injector exhibit a resonance condition
at a fundamental chamber acoustic frequency, the potential exists for rapid growth of combus-
tion instabilities. For this reason, the dynamic response of swirl injectors is a topic of significant
importance in this community.

Despite this interest, there are rather limited works that discuss the dynamic response of swirl
injectors. The most widely recognized analytical work in this field is the 1979 book by Bazarov [1],
who developed a linear theory based on small disturbances propagating through the injector How.
Overall, Bazarov’s theory [1, 2| presents itself as a valuable analytical tool that may indicate on
which frequencies what strength of injector response one can expect. Before Bazarov’s work, there
did not exist any theory similar to this one in its level of extensive description of injector dynamics.
Because this is the current standard for use in analysis of dynamic response of swirl injectors, we
developed an in-house code to be able to use this as a predictive capability within our group. The
code was validated against results published within Bazarov’s book. The code was exercised over
a range of conditions in order to assess its behavior [3, Chap. 2]. As a result of these efforts, we
identified several aspects of the theory which provide for motivation for improvements and further
study:

Regarding surface wave treatment:

e The variation of internal How boundaries is simplified to the case of sudden film thickness
change, as the vortex chamber transitions to the nozzle, which permits one to ignore wave
refraction and results in a reflection coefficient that does not depend on the disturbance fre-

quency.

e When treating surface waves, that are reflecting back an forth in the vortex chamber, the wave



speed taken for both downstream and upstream traveling disturbances is such that it is valid

for downstream traveling disturbances only.

e Only long wave speed relations are considered, that do not formally apply at high disturbance

frequencies, where Kelvin’s [4] dispersion becomes more appropriate.

Regarding vorticity wave treatment:

e The process of liquid issuing from the injector tangential inlet into the vortex chamber is
represented by a conformal mapping of the half-strip into the half-plane, however, no clear

theoretical evidence exists justifying this representation.

e To determine the phase shift in the radial direction, the expression for steady state radial
velocity is used which does not obey Laplace’s equation describing the potential flow at the

steady state.

e To compute the time lag in the radial direction, the radial distance from the cylindrical wall
of the vortex chamber to the point of interest at some arbitrary radius is divided by the
steady radial velocity corresponding to this point, however, it is not taken into account that
this radial velocity actually varies with radius, so that an integral expression for the time lag

should be used.

These issues provided a motivation for the present study.

More recently, Park [5] investigated the dynamics of swirl injectors by using axisymmetric
boundary element method (BEM), which assumes that the flow is incompressible and irrotational.
The way Park modeled the How unsteadiness was by fluctuating sinusoidally the inflow velocity,
while the pressure inside the core remained constant. His work was among the first that attempted
to model the unsteady dynamics of swirl injector by methods of CFD. Richardson [6, 7] continued
the above work of Park [5] and relaxed the condition of constant gas pressure in the core and allowed
it to fluctuate. Now, the inflow velocity was computed based on instantaneous pressure drop and
the radius of the core surface at the head end. Recently, a research group in Korea, Khil et al. [3], [9]
pulsed the Hlow in the range of frequencies of 100-300 Hz, and presented the experimental data for

the pressures and mass flow rates. Experimensal results have been also published by Ahn [10, 11],



whose work is aimed at achieving response data in the broader frequency range, possibly the same
as in Bazarov’s [1] experiments.

Figure 1 provides a schematic of a classical swirl injector. An “air core” evolves at the center
of the injector due to the vortical inflow. The shape of the free surface shown schematically in
Fig. 1 has a head-end transition region that results from the flow accelerating in the axial direction
from its initial tangential injection. A similar transition region exists near the nozzle as the flow is
accelerated via the conical convergence section. One of the major hurdles one must undertake to
assess the dynamic response of a swirl injector relates to the propagation, refraction, and reflection
of waves that form on the free surface of the liquid film. Complex dynamic patterns can result from
interaction of these waves, and, as the flow is swirling, the undulations can also lead to local changes
in the swirl level. For these reasons, the analysis of the dynamic response of these injectors is quite
challenging. In this study, we focus on the disturbance wave reflections and the resonance caused
by them. There is no indication in the existing literature that this topic has been investigated to
date. Note that, at the present time, all analytical models describing the steady-state injector free
surface do not consider the head end and the nozzle entrance transition regions at all, because the
engineering design interest lies mainly in finding the core radii in the uniform regions of the injector
(Taylor [12], Bayvel and Orzechowski [13], Bazarov [1]). In reality, the variation of the free surface
shape in the said transition regions does take place, and is smooth and continuous, which sets the
favorable conditions for the wave refractions and reflections to occur [3] as follows next.

Imagine that an incident wave has been induced in the vortex chamber and is moving in the
positive axial direction towards the nozzle. At the entry to the conical convergence section, an
abrupt change in the bulk flow velocity and the liquid film thickness takes place. Thus, when an
incident wave arrives at that discontinuity plane, one portion of it reflects back into the vortex
chamber, in the negative axial direction, and another portion transmits further into the transition
region. Now, let us track the retlected portion of it in the vortex chamber. When the reflected wave
comes to the head end solid wall, it is reflected once again, in the positive axial direction. Thus,
we see two planes generating a wave reflection, suggesting that a standing wave pattern may be

arranged in the vortex chamber.
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The amplitude of the resulting standing wave depends on the reflection and transmission char-
acteristics quantifying the events of reflections just described. Because these characteristics depend
on the disturbance frequency, then, there may be frequencies, at which this amplitude is maximized.
These frequencies are the natural frequencies of the swirl injector. Since the swirl injector is coupled
to the combustion chamber of the rocket engine, then a resonance may occur when the combustion
instability frequency coincides with one of the natural frequencies of the injector. Accordingly, fur-
ther on, we will refer to the natural frequencies of the swirl injector as the resonant frequencies.
For this reason, it is highly desirable to be able to predict these resonant conditions and that is the
prime motivation for the present study.

We can treat this problem by using three different levels of approximation, depending on what
parts of the injector are included in the analysis. In the first approximation, Sec. IV, we consider the
vortex chamber and the nozzle by assuming that they are connected by a sharp (radial) step, and
look for the nozzle effect on the wave reflection and resonance characteristics. We shall refer to this
treatment as the Abrupt Convergence Resonance Model, or ACRM. In the second approximation,
Sec. V, we consider all three elements of the swirl injector, the vortex chamber, the conical convergent
section, and the nozzle, and look for their collective influence on the wave reflection and resonance.
We shall refer to this as the Conical Convergence Resonance Model, or CCRM.

In both approximations, we approach this problem by matching the instantaneous mass fow
rate and momentum fuctuations at locations where the flow has discontinuities. For this purpose,
in Sec. III, the expressions for the instantaneous mass How rate and momentum Huctuation in terms
of the disturbance frequency will be derived.

Both of these approximations are equally important, because each one of them may be used for
the assessment of the swirl injector in terms of its resonant characteristics, depending on the level
of detail required in the assessment. Also, they may serve as a cross check between each other, since
this topic is new and the results have to be anchored to one another when possible.

Note that in all models considered, we will assume that the circumferential velocity follows the

free vortex law as ug = C'/r. Finally, we shall emphasize that we will deal with the long waves only.



II. Fundamental Condition for Resonance from Wave Considerations
We know that a general swirl injector with an arbitrary angle of conical convergence generates
an oblique reflection at the point where the vortex chamber connects to the conical section. For
simplicity, let us imagine that we have placed a straight step discontinuity at that point, so that
all reflections in the vortex chamber become normal. Further, let us completely disregard the part
of the injector downstream of that step discontinuity. Figure 2 then shows the assumed injector

representation for this problem.

L L L L

v c n v Imagined
| straight
step
discontinuity
Real injector ‘ Assumed injector =
e

Disregarded region

Fig. 2 Schematic of injector representation for ACRM

Now, let us imagine what would the standing wave pattern look like when the injector resonates
with downstream processes (such as combustion). Consider vortex chamber resonance from the
injector response perspective. First, we expect that, at resonance, the injector response should be

at its maximum. Second, from its definition (Bazarov [1]),

s !
m,,

m
Hin‘ = —F (1)
J 7
Apinj
Az_)inj
where 17, is the nozzle mass flow rate and Ap;,; is the injector pressure drop, we see that the
injector response is maximized when the magnitude of the nozzle mass How rate Huctuation, m/,,
is at its maximum, and the magnitude of the injector pressure drop fluctuation, Ap’i”j, is at its
minimum. This is true, if and only if we have a node at the head end and an antinode at the nozzle

entrance [3, Sec. 5.2]. Figure 3 shows schematically different possible modes of the wave pattern

that we may anticipate when the injector resonates.
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Fig. 3 Schematic of standing wave pattern when swirl injector is at resonance

In addition to the assumed radial step discontinuity, we also assume:

1. The disturbance wave speed is much larger than the axial bulk ow velocity in the vortex

chamber, so that we can think of the fluid in the vortex chamber as being quiescent with zero

d_7b‘
Y

axial velocity, or @, = 0 and

2. Since the variation of the free surface radius at the head end is small [3, Chap. 3], we can

overall assume that r,. = 7, (see Fig. 1).



In accord with these assumptions, we can write the wave equation [1, 14], which describes the
height 7 of long waves traveling on the core of swirling fluid in the vortex chamber, as

327} L R2 72 82"
=g v 2
12 2rd 922 @)

where the injector dimensions are shown in Figs. 1 and 3, and C' = ugr is the angular momentum

constant in the swirling flow. The general bounded solution to this equation is a periodic function

n = [P cos (kqt) + Qsin (kvt)] [A cos (kz) + Bsin (kz)]

R:’ _ T‘Z .
%, and k is the wave number.
T

v

where P, @, A, and B are the unknown constants, y> = C*
The positions of nodes and antinodes in Fig. 3 indicate two boundary conditions for 1 valid at

all times:
(a) |n| should be zero at the head end, z = 0.
(b) |n| should be maximum at the end of the vortex chamber, z = L,.
From (a), we conclude that A = 0, which reduces the general solution to
n = [P cos (kqt) + Qsin (kyt)] sin (kz)

where we have absorbed B into P and ). Now the standing wave pattern is clearly seen. From (b),

we deduce that sin (kL,) = %1, which yields the resonant wave numbers:

e
I =1,3,5,... 3
n2Lv, n [ Yt B ()

The resonant frequencies, wy = kv, are respectively
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where by subscript zero we emphasize the notion of resonance.

III. Long Wave Fluctuations of Mass Flow and Momentum in Cylindrical Flow Sections
In this section, based on the definitions of instantaneous mass flow rate and momentum, we will
derive expressions for the fluctuating parts of each of them, written up to the first order in 7, that are

valid in a purely cylindrical section of the swirling tlow, in which the radii of steady flow boundaries

10



and bulk stream velocity are considered constant, and which is experiencing long wave perturbations.
We need to know this information for use in the more precise wave reflection/resonance models
(ACRM and CCRM) of the swirl injector that will come later in the next two sections.

Let us assume that we can split the axial flow velocity, u,, and the cross-sectional area of the
gaseous core, A, into the mean and disturbed parts as u, = @, +u/, and A = A+ A’ respectively,

where the disturbances are assumed small, and given by Fourier waves

ul ﬁvzei(kz—wi) _41 = fiei(kz—wl) n= ﬁei(kz—wl)

Let us determine u/ and A’ in terms of 7. From the definition of A,
A=A+ A =n(8+n) = w6+ 2néy

follows that A’ = 278n. To find u’, the cylindrical constant velocity How setup assumed here in
permits us to use the linearized continuity equation by Darmofal et al. [15], which in combination

with the expression for A’ gives:

ki, —w
l=9f—2 5
U k (R? —62)7] &)

where § is the steady free surface radius, and R is the solid boundary radius.

A. Long Wave Fluctuation of Mass Flow Rate

By definition, the instantaneous mass flow rate at any tlow cross-section can be written as

R " R 341 R d+n “
m=p / (@, +ul)2mrdr = p L/ a,2mrdr — / u,2mrdr +/u227rrdr - / ui?ﬂrer
54n 5 s 5 s

Recognizing the steady mass flow rate in the first integral, neglecting the last integral as it is a
higher order term, and eliminating other higher order terms, the unsteady part of the mass tow

rate becomes:
m' = —2mpa,n+ pr (R* = §7) o

We can modify further this equation by substituting the velocity Huctuation from Eq. (5),

m' = —27rp5%17 (6)
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B. Long Wave Fluctuation of Momentum

Assuming there are no external body or friction forces acting on the flow, we can define the total
momentum of the flow, My = My, + ML, as being consistent of the kinetic part, M, = M, + M/,
and the pressure part, M, = Jl7p + M ;',, which we may write as

R R
My =M, +M,=p / (i, + u'z)227r-rdr + / p(r)2mwrdr (7)
+n +n

k) B}

Let us investigate both of these integrals separately. Starting from the kinetic part, we may write

R
M,=M,+M =p / (@, +ul)*2nrdr = paln (R? — 6%) — puim20n+ p2a,u.w (R* — 67)
5+n

From here we can extract the unsteady part, and then substitute the velocity fluctuation from

Eq. (5) as follows:
;s ki, — w
M. = —p2néain+ p2n (R* = §°) aul = pm (—25'&; + 4&;5%) n (3)

Next, since the flow is purely axial and we do not have the radial velocity Hluctuations in the long
wave treatment, the pressure at some radius in the How may be written as

Y=p [ —d c?
0= [ Sar-sko

841

1 1
e v aNE
@+m)" T
where 7 is a dummy radius. Now, we can insert this expression into the pressure part of momentum

R
ﬂ[p:l\_[p-l—]l[;,: /p(r)Q'”TdTZpTrCQ{l 1 |: 2—(6-}-7‘,)2]_]116_}:7’} (9)
+1

2 (5+n)°
4 (6+m)

Eq. (7) to get

To work on the first term in this expression, we will use the binomial expansion

1 1 2
Grnp & &

By substituting into previous equation, we can write

1 s q RP-8 R-8 1

b =

To modify the logarithm term in Eq. (9), we will use the binomial expansion

[y
—
—

=11
=%
b

+7]————q77



and the series expansion [16, p. 111]

(F-ay , @1
7 T3

Inzr~(z-1)-

which we write up to the third term in this study. Note that this expansion is formally valid for
|z —1] <1, 0r 0 < z <2. In this study, for simplicity, we will assume that this series expansion is
valid for the whole range of the argument, or for z > 0. Ideally, one would write as many terms in
this expansion as possible to make the end result more precise. Then, the logarithmic term can be

written as:
R R 1(R > 1(R 5 R{ R* R
l“5+q‘(?_l)_§<3— ) +§(3—1) +5—2(—5—2+33—3)n (11)
Plugging Egs. (10) and (11) back into the pressure part of momentum, Eq. (9), we have
-8 (R _),1 R_12_1 R 4
252 5 +§ 7 3l

_1)
2 R2-§ 1 R R? R
e [—T_S_a_z("a_ﬁ”?_?’)}"

M, = pnC?

From here, we conclude that the unsteady part of the pressure momentum is given by

R?2-4§ 1 R R?
I _ 2
M, = pnC {— - (

R _ 21 (p3_ 4p2 2
I —5—2—}—3?—3)}77—/)#0—(5’ 4R*§+3R6%)n  (12)

54
Adding the unsteady kinetic and pressure parts given by Egs. (8) and (12), and rearranging, we
arrive at the expression for the total momentum Huctuation:

2 k_-z —Ww 2 1 2 2
ML = pr [—2517; + 4@5% +C%5; (R* —4R*5 + 3R8%) | (13)

IV. Abrupt Convergence Resonance Model (ACRM): Wave Reflections and Resonance

when Vortex Chamber and Nozzle are Connected with an Abrupt Step Discontinuity

In this section, let us build upon the above mentioned idea that we have an abrupt step change
at the end of the vortex chamber, and connect the nozzle just downstream of that step, with its
own solid boundary and free surface radii, R, and 7, respectively, Fig. 4, Consider an incident
downstream traveling wave D exp [i (k22 — wt)] in the vortex chamber. When it comes to the step
discontinuity, a part of it reflects back as an upstream traveling wave Bexp[i(k1z —wt)], and

another part of it propagates further into the nozzle as a transmitted downstream traveling wave

13
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Fig. 4 Schematic of wave reflection and transmission for ACRM-2

Aexp[i(k,z —wt)]. The arrows in Fig. 4 indicate the respective directions in which all of these
waves travel, and ki, k2, and k,, denote the corresponding wave numbers. Here and further on, the
upstream traveling waves will be indicated by odd numbers, and the downstream traveling waves
— by even numbers. Note that there may not exist an upstream traveling wave in the nozzle as
the local flow speed typically exceeds the upstream wave speed. Finally, similarly to Section II, we
will assume again that the bulk flow axial velocity in the vortex chamber is negligibly smaller in
comparison with the disturbance wave speed, and may be set to zero, %,, = 0.

Based on Eq. (5), at any point in the vortex chamber, we may write the collective velocity

fluctuation of the waves B and D, that are superposed on each other, as

k1, — kot
UI7 =2r, z: Be1(k17 wt) + 2 Z: Del(}\ﬂl wt)
: ki (RS —13) ky (B3 —13)
At the head end solid wall, z = 0, we know that the axial velocity Hluctuation should be zero at all
times. Then, noting that 7,, = 0, we can reduce this equation to
B D
/
0,t) = —+—=0
L (0,0) =+
Again, since @,, = 0, the wave numbers k; and ko are symmetrical, k; = —k>. But, based on the

last equation, this means that D = B. Conclusively, we can say that we have a purely standing

wave in the vortex chamber, which excites an outgoing wave of amplitude A in the nozzle.
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To relate A, to the amplitude of the standing wave in the vortex chamber, D, consider the
balance of the mass flow rate fluctuation at the matching boundary, z = L, (see Fig. 4). Based on

the derived Eq. (6) for the mass tlow rate fluctuation, we may write
—9mpr, %Bei(le.,—wt) o %Dei(k:L.,—wt) - _QWPTn%AEi(k"L.,—wt)

By substituting the equalities D = B and k; = —k2, and rearranging, we can obtain the expression

for A in terms of D:

Tv (e=ikalu _ giksLy)

A=t

D 14

_Tn ik, L, 0y
n

What does this equation mean from the injector resonance point of view? In this equation,

ks and k,, depend on the disturbance frequency through the long wave speed relationship, given in

general as
w —ka, =:l:k\/02—— (15)
and which for the vortex chamber and the nozzle is given by

w=+k2\/C—T w—

These equations take into account the respective film thicknesses in the vortex chamber, R, — r,,

and the nozzle, R, — r,. Hence, if D is fixed in Eq. (14), the magnitude of A should vary with
regard to w. Then, there may be frequencies, where |A| is maximized, thereby causing the most
pronounced mass How rate pulsation in the nozzle. Theoretically, these frequencies should coincide
with the resonant frequencies, Eq. (4), which we have derived in the fundamental condition for

resonance above (Sec. II).

V. Conical Convergence Resonance Model (CCRM): Wave Reflections and Resonance in

Injector with a Conical Convergence Section
Let us add some of the more realistic features to the previous model by considering that there

are the following additional components of the injector How:

1. A distinet head end region, 0 < z < 2R;, where the bulk flow velocity is zero, and the free

surface radius is equal to r, as shown in Fig. 1.
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2. A nonzero bulk tlow velocity in the vortex chamber, in the region 2R; < z < L,.

3. A distinet conical convergence section connecting the vortex chamber to the nozzle, spanning

the region L, < 2 < L, + L..

Item 1 tells us that, now, we can have a purely standing wave only in the head end region of the
Hiow. Item 2 will result in the fact that, because there is now a finite bulk fow velocity in the vortex
chamber, the lengths of the waves propagating in stream wise and counter stream wise directions
will differ from each other, which leads to the phenomenon of partial standing waves, which is well
described in Dean and Dalrymple [17]. Lastly, item 3 invokes the notion of a smooth variation of
bulk How velocity and boundaries in the conical convergence region up to the point where the free
surface radius reaches the value of r,, in the nozzle. The nonuniform How causes the disturbance
waves to both refract and reflect as they travel through the How transition.

This compound problem of wave refraction and retlection is difficult to attack at once. However,
there is a simplifying way to deal with it by saying that we can discretize the entire transition region
into short cylindrical sections, in which the radii of solid and free surface boundaries do not change,
thereby effectively eliminating refraction. This technique is very similar to that used in gravity
waves, where the classic example is the paper by O’Hare and Davies [18]. But, in each of these
short sections, we need to know the local wave number. It can be shown (see [3, Sec. 4.2]) that the
same long wave Eq. (15) can be used in this case, with the difference that the local values of .,
R, and J need to be used. In turn, the local bulk flow velocity follows simply from the steady state
continuity in each of these sections.

We will start the analysis first by considering that there is just one cylindrical section connecting
the vortex chamber to the nozzle. This will serve as a good platform to show the main features of
the problem. Then, we will generalize the equations used in this simple problem for further using
in geometries where more transition sections are considered. The analysis will be concluded with

an algorithm that produces solutions for such general geometries.
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A. CCRM with One Cylindrical Section in Transition

For now, let us represent the transition region by just one cylindrical section as shown in Fig. 5.
The How parameters corresponding to this cylindrical section will be denoted by subscript 2 to
indicate that it is located next to the nozzle section. Further, let the radii of this cylindrical section
be given as the average between the corresponding solid boundary and free surface radii of the
vortex chamber and the nozzle: Ry = (R, + R,)/2 and ro = (r, + 1,,)/2. We have four sections of
the flow connected at their respective discontinuity boundaries: the head end region, the uniform
vortex chamber region, the cylindrical section, and the nozzle. Note that we consider the nozzle up
to the point where we assume the transition ends, which, based on the results of [3, Sec. 3.4], is

located at z = L, + L. + 0.5R,,, see Fig. 5.

Iy 2 0.5R
- |

= Ge™ Fe™
Nz'ku,z
e
—
| I
|
v

Fig. 5 Schematic of wave reflection and transmission for CCRM with one cylindrical section

Similarly to the previous model ACRM, if an incident wave M exp [i (kgz — wt)] has originated
say at the head, it will generate a series of reflected and transmitted waves in all of these four
How sections. Fig. 5 shows their respective directions of propagation and wave numbers. In each
section, we have two waves traveling in opposite directions. We can calculate their wave numbers,
but their amplitudes are unknown. Let us say that we know the amplitude of the original incident
wave, M. Since there is a purely standing wave at the head end, then we also know that N = M
and k; = —ks (see ACRM for more discussion). This leaves us with six unknown amplitudes, A
through G. There are three matching discontinuity boundaries that can relate them together, with

locations at: z = 2R;, 2 = L,, and z = L, + L.. In contrast with the previous ACRM, at each of
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these boundaries, in addition to the matching of the fluctuating mass How rate, we will also assure
the matching of the Hluctuating momentum. This will accordingly provide six equations to solve for
the unknown wave amplitudes.

Let us start with the matching of the fluctuating mass flow rate given by Eq. (6) at z = 2R,

z=1L,,and z= L, + L.. Then we can write the following:

_ Y ppiks2Re _ Y v ike2R: _ i(e—ika‘zﬂ, _eikszR,) M (16)
ks ke ks
= rgiDeiksL" = rgiEe‘k‘L“ + rviFeiksL“ + r,,iG'e"kGL“ =0 (17)
k3 k4 5 k6

_ r,,iAe”‘" (Lo+Le) _ TniBeikg(Lu+L(.) + TziDeiks(L.,+L‘:) + T_ziEeik4(L.,+Lc) -0 (18)
k1 ko k3 kg

Before considering matching of the Hluctuating momentum, let us introduce the following coefficients :

klﬁzn_w 2 1

Ki=-2r,a%, + dgntn———+C?— (RS —4R}rn+ 3R.12)
1 Tn
s 2 kﬂﬁzn —w 2 1 ek 2 2
Kp = —2r,a;, + 4u,,,,rnk— + C"—4 (Rn —4R:T, + 3R,,r;)
2 i
i) =t kBﬁzﬁ —w 2 ! 3 2 2
Kp = —2ro@2, + 4u,,2r2k— + C-T—4 (RS —4R3r5 + 3Rors)
3 2
P ,—zf) — W a9 1 2 2
Ky =iyt Biggraemd g O (R = 4R3rs + 3Ror3)
4 2
o _2 - kst —w 51 3 2 9
Kp = =2r,@, + 4yt ——— + C7 (R —4R?r, +3R,r7)
5 Ty
—2 - kﬁﬁzu —w 2 1 3 2 2
Kg = -2r,a;, + 4uz,,r,,k7 + G (R3 — 4R?r, + 3R,72)
6 rv

Then, based on Eq. (13), the matching equations for the fluctuating momentum at z = 2Ry, z = L,,

and z = L, + L. are given by:

35 ey Y ) 1 e by ) —ike?2 ik=2
KpFe*sR  KoGet*e2Re = 2 (RS — 4R%r, + 3R,72) (e~*e2Re 4 gtha2Re) pr  (19)
TU
KpDe*=Lv 4 KpEe'*sle — KpFe*sls — KoGeltsle =0 (20)
KaAetEotle)  gp Betkallvtle) _ g Detkallotle) _ g peiks(lotle) = g (21)

We can rewrite Egs. (16)—(13) and (19)—(21) in a matrix form as shown in Fig. 6. Solution of
this matrix equation then gives the dependence of the wave amplitudes A through G on the wave

amplitude of the original incident wave, M.
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What information can we extract from this solution with regard to the injector resonance? As
before, all wave numbers in the matrix equation, Fig. 6, depend on the disturbance frequency, w.
Therefore, all amplitudes A through G in the solution depend on w as well. At injector resonance,
because the film thickness fluctuation in the injector nozzle should be maximum, we should see the
greatest magnitude of the disturbance wave transmitted into the nozzle, which is represented by
the amplitude B, and vice versa, we should see the smallest magnitude of the disturbance wave
traveling back into the vortex chamber, which is represented by the amplitude A. Accordingly, the

frequency at which |B| is maximum, indicates a resonant frequency.

B. Generalization of CCRM to Multiple Cylindrical Sections in Transition

We are interested in having multiple cylindrical sections in the transition region in order to
better represent a conical convergence surface. This will generate a larger matrix than that shown
in Fig. 6 for finding all wave amplitudes involved in the solution. Let the solution in this case be
represented by a matrix equation X -a = Y, where X and Y are the generic matrices similar to
the left hand side (LHS) and the right hand side (RHS) matrices in Fig. 6, and a are the generic
wave amplitudes. To illustrate how to construct the matrices X and Y, let us consider again the
flow setup that has just one cylindrical section in conical transition as a reference, Fig. 7. This will

serve as a starting platform, from where the solution may be extended further on to more transition

sections.
Head o oo §
end Section 3 35
3 2
le C Section 2 >
| 1
o | @ R/ \ Section 1
%t © ik o2 ik 2 ik ik,.2 ik, g2 iy
—— ae ae"s” ae® g R ae™ ae™”
ik,],:l — - *L i’ - A S —
ae”
7 |
g ’E
| I
i, :

Fig. 7 Schematic of wave reflection and transmission for generic CCRM
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Let us represent each flow section by an index ¢, and their total number by N. Let the head
end section be denoted by the index ¢ = N 4 1. In this particular case, N =3 and ¢ =1...4. Let
the first index under the wave number correspond to the Hlow section number, and the second index
— to the direction of wave propagation: 1 — for upstream traveling waves, and 2 — for downstream
traveling waves. Moreover, let us define the radial boundaries of each section by r, and R,, and the
discontinuity boundaries, at which the fiow sections connect to each other, by z,. Finally, note that

the wave amplitudes a are counted simply in a sequence 1, 2, 3, ....

Table 1 Values of r,, R,, and z, in generic CCRM with one cylindrical section

Ty =Tp R, =R, 2 =L, 4L,
ra = (rv+7n)/2|R2 = (Ry + Ra) /2|22 = L,
T3 =Ty R3 = Rf zZ3 = 2R¢

T4 =Ty R4 = R,, 24=0

By comparing Fig. 7 to Fig. 5, it is easy to determine ry, R,, and z,, they are summarized in
Table 1. Based on 74, Ry, we can determine the bulk flow velocity, 7.4, the wave numbers, &, and
coeflicients K, (that are needed for the momentum balance, see page 18) for each section of the

Hlow. The bulk How velocity follows from the one-dimensional continuity as

LRV

—T

(22)

Qe

2
Tq

The wave numbers for both upstream and downstream traveling waves can be found based on

Eq. (15) as
gy + c'_’ q2r4 q
q
kq’l =w 5 5 (23)
a2 — 22"
3 2r}
Rz —r2
= 2ftq 77y
Uy — 1/ C o
kg2 =w 3 qn (24)
22
a2 — (29 ‘g
a 2r}
And, by using Eqgs. (22)—(24), we can determine the coefficients K as
—2 - kgptizq —w 21 (13 2 2
Ky =—2r08 + 4uzqqu +0% (RS —4R3r,+3R,r2) (25)
. q
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2 1 2 Py
K +C2?— (RS — 4R%r, +3R,r2) (26)

q,2 Tq

Now we can rewrite the matrix equation shown in Fig. 6 in terms 74, z4, k¢, and K, as given in
Fig. 8. Similarly to the previous matrix solution, the resonance will follow from this solution at
frequencies where |as| is at its maximum.

An algorithm has been created [3, Sec. 5.5] to construct the matrices like that shown in Fig. 8.
The matrix is divided into halves resulting from mass How and momentum conditions respectively
and constructed following standard linear algebra techniques. Solutions have been obtained for a
general number of steps as described in the following section. As a validation of this algorithm, we

confirmed that it replicated the results obtained in the previous section when only & single step was

present.

VI. Nondimensionalization and Baseline Injector

In this study, we will use the fluid density p*, nozzle radius, R},

and the mean tangential inlet
inflow velocity, W , as dimensions. The dimensional values are denoted by superscript *. Hence,

for the parameters that we will use further on, we have:

Wk 1
UJ*:O«'RI*", k*:kF,

O* =CW4R

Since eventually, in Part II of this research, we will validate theoretical results in this study
against Ahn’s [10] experimental results, the baseline injector will have the same characteristics as
the injector used in his experimental testing [10, App. B], with the sizes outlined in Table 2.

The baseline steady state pressure drop and convergence angle are: Api,; = 40.3 psi, a = 45°.
Applying the methodology described in Bazarov [1, Sec. 3.1], we can calculate the steady core radii

and velocities, Table 3.

VIL. Results
In this section, the results will be presented for each of the above derived models of the wave
reflection and resonance. Both ACRM and CCRM are compared against the fundamental condition
for resonance shown in Eq. (4). All results presented here are valid for the baseline injector described

in Tables 2 and 3.
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Table 2 Baseline injector geometry

Parameter | Dimensional |Nondimensional
R, 0.250 in 1.0
R:, 1.125 in 4.5
R, 0.125 in 0.5
R, 1.250 in 5.0
L 0.450 in 1.8
L, 1.000 in 4.0
L 5.000 in 20.0
Nin 4

Table 3 Baseline steady core radii and flow velocities

Parameter | Dimensional |Nondimensional
The 0.1794 in [0.7177

5 0.1794 in|0.7177

T 0.2019 in|0.8077

Win 3.7596 m/s|1.0

Uszy 0.1535 m/s|0.0408

Uzn 10.8135 m/s|2.8762

A. ACRM Results

From Eq. (4), we can immediately determine the resonant frequencies. A practical issue results
from the fact that the ACRM presurmnes a radial step, while the actual injector incorporates a conical
convergence. For the purposes of comparison, we shall assume that the step is located at the center
of the convergence section, which implies that we replace the vortex chamber length in Eq. (4)
with the length L, + L./2, where L, is the length of the convergence section. We shall apply this

methodology throughout as we assess the behavior of the ACRM.
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For the baseline injector, we have summarized them in Table 4 for the first five modes. Notice
that, due to this calculation, the first resonant frequency is 205.7 Hz, to which we will refer to in

Part II of this research, when comparing with the experimental first resonant frequency.

Table 4 Resonant frequencies due to ACRM (ﬁrst 5 modes)

Mode, n| wy |wp (rad/sec)|fs (Hz)

1 2.2 1292.2 205.7

3 6.5 3876.7 617.0

5 10.9 6461.1 1028.3

~1
=
o
e

9045.5 1439.6

9 19.6| 11630.0 1851.0

We set the amplitude of the incident wave at the head end to unity, D = 1. Then, based on
Eq. (14), we can plot the amplitude (absolute value) of the outgoing wave, |A| versus the disturbance

A

frequency, Fig. 9. Notice that the peaks of

are located exactly at the same frequencies as
was predicted by the fundamental resonance condition (see Table 4). As was assumed in ACRM,
these peaks indicate the frequencies, at which the mass flow rate pulsation in the nozzle becomes

maximum, and hence are the resonant peaks.
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Fig. 9 Amplitude of the outgoing wave vs. disturbance frequency in ACRM-2
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Also, this calculation shows that the value of |A| varies from zero to 9.45. The fact that |A|
shrinks to zero at some frequencies tells us that, at these frequencies, we can potentially expect
damping of flow pulsations in the injector. And the fact that |A| may reach to values as large as
9.45 compared to the value of D = 1 signifies that the amplitudes of the outgoing waves may be
much larger than the amplitudes of the original incident waves in the vortex chamber. This situation
is natural, because we know that the wave length in the nozzle is shorter than in the vortex chamber,

and thus the wave amplitude has to be larger to conserve energy.

B. CCRM Results

From the way the CCRM is derived, we can raise a question of how many short cylindrical
sections there should be in the transition region. Or, in other words, what does “short” mean in
relation to the axial dimension of the transition? We can deal with this problem as follows. We will
investigate several different setups, with a different number of cylindrical sections in the transition
in each case, in terms of the resonant peaks that each of them produces. Note that increasing the
number of cylindrical sections leads to larger solution matrices, which increases the computational
time. If there is a large variation in the answer from case to case, we should be looking for a
converged solution. If the answer does not change much, then we can choose the setup, that is the
fastest.

Let us first consider eight cylindrical sections in the transition, Fig. 10. This corresponds to the
length of each of these sections equal to 0.5R,,. The amplitude of the original incident wave at the
head end, is set to 1 as before. For this setup, the amplitude of the outgoing wave, a- (see Fig. 7)
versus the disturbance frequency is shown in Fig. 11. Notice that the resonant peaks, now located
at 118 Hz and 470 Hz, are different from the first two resonant peaks, 205 Hz and 617 Hz, predicted
by ACRM (see Table 4 and Fig. 9). This immediately indicates that the resonant characteristics
of an injector with a distinct conical convergence section do differ from those of an injector with a
90° step transition. Also, by looking at the magnitude of |as| at different frequencies (that reaches
the value of 1263 at the second peak) in relation to the magnitude of the original incident wave,

which is 1, one may wonder why the former is so much larger. The answer follows from the fact
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that the amplitude of the upstream traveling waves rises to infinity as we move closer to the point
where the transition ends and the uniform nozzle region starts (see [3, Chap. 4]). This fact causes
the large difference between the amplitudes of the original incident waves and the outgoing waves.
Since, after all, this analysis is a first order small disturbance analysis, the wave amplitudes are not
as much important as the frequencies where they peak out.

Now, let us move on to the larger number of cylindrical section by decreasing their width down
to 5% of the previous width 0.5R,,. The width is denoted as w in this investigation. Fig. 12 shows
the new locations of the resonant peaks and Table 5 summarizes the respective resonant frequencies

along with the sizes of the solution matrices in each of the cases considered.

Table 5 Sensitivity of resonant peaks in CCRM to cylindrical section width

Width, w|lst peak, Hz|2nd peak, Hz|Solution matrix size
0.500R,, 118 470 10x10
0.250R,, 119 463 19x19
0.100R, 121 484 46x46
0.050R,, 110 462 91x91
0.025R, 120 455 181x181

In Table 5, we can see that the resonant peaks are moving within 3% of the baseline values as we
vary w. The solution matrices, however, grow roughly two times bigger each time we decrease the
width to the half of the previous. This means that we can choose the baseline case, with w = 0.5R,,,

for further calculations, because it requires the least computational time.

VIII. Conclusions and Discussion
In this paper we have presented possible methods for accounting for the disturbance wave
retlections and the resonance caused by them in the rocket swirl injector. We have considered two
models differing in their levels of complexity depending on whether or not we consider the presence
of the nozzle, and, if we do, then how exactly do we treat the connection of the nozzle to the vortex

chamber: either through a sudden step discontinuity, or through the conical convergence section.
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The results following from the first abrupt contraction resonance model (ACRM) have shown
the same resonant frequency predicted by a simple wave analysis, Eq. (4), which confirms the
existence of resonant frequencies within a swirl injector. Because both of them take into account
only a sudden step discontinuity, we can potentially expect that both of them can be used for the
resonance analysis of the injectors having 90° sudden convergence, or, steep convergence angles, in
general.

From the results of conical convergence resonance model, CCRM, we have seen that the am-
plitude of the outgoing wave can be much larger than the amplitude of the incident wave. This
is attributed to the fact that the amplitude of the upstream traveling wave, at the point where
the nozzle entrance transition region ends and the uniform nozzle region begins, grows to infinity,
as follows from [3, Chap. 4]. Also, we have seen that the resonant frequencies following from the
CCRM are different from those in ACRM. This clearly shows that, when the injector has a distinct
conical convergence between the vortex chamber and the nozzle, its wave reflection and resonance
characteristics are different from the injector having the 90° sudden step convergence.

The question is now: can we trust these models to predict the injector resonance? Our approach
to answer this question will be through setting up a computational BEM model in Part II of this
study, which closely replicates the boundary conditions used in the analytic models here, and going
through the parametric study, in which we can investigate the influences of such parameters as
a, L,y L,, R,, and W;, on the injector response. The comparison of the frequencies where the
response is maximized with the resonant frequencies predicted by the analytic models in this part
of the study will provide an indication of how adequate they are. Following this logic, in Part II,
we will be presenting both theoretical and computational results in parallel. Ultimately, we shall
compare the theoretical and computational results to the experimental. While there are limited
data for this comparison, we do address this issue in Part II as well.

To conclude, it has to be noted that, in such reflection-refraction problems, where the transition
is approximated by the cylindrical sections, in addition to the regular linear reflected and transmitted
waves, we would expect another type of waves to form, which would damp out as they propagate

far away from their respective step discontinuities. But usually, the required analysis applies a
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variational approach, a classic gravity wave demonstration of which is provided in Miles [19]. In this

study, we have ignored these waves, as the application of variational analysis to the swirling How

is difficult. But their inclusion could potentially make the reflection /resonance analysis presented

here to be more precise.
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Appendix B — On the Dynamic Response of Rocket Swirl Injectors Part I1.

Nonlinear Dynamic Response
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Part II. Nonlinear Dynamic Response
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Nonlinear boundary element calculations are used to compare and contrast results from
the linear theories described in Part I of the study. Parametric evaluations are con-
ducted to assess the influence of vortex chamber dimensions, convergence angle, nozzle
length, injector flow rate, and pulsation magnitude on dynamic response characteris-
tics. Resonant frequencies are compared against the linear theory. Overall magnitude

of frequency response is characterized for a wide range of injector designs.

Nomenclature
C = angular momentum constant (C' = u,r)
f = disturbance frequency
dsg,iq = grid spacing
L. = length of conical convergence section
L, = length of nozzle
L = length of vortex chamber
Ty = nozzle exit mass flow rate
Nin = number of tangential inlets
R = inflow radius (R;n = R, — R:)
q = normal velocity
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In Part I of this study, we developed two analytic/linear models for assessing the magnitude
of the injector masstlow pulsation induced by a sinusoidal pressure disturbance on the air-core of
a classic swirl (simplex) injector. The Abrupt Convergence Resonance Model (ACRM) describes
the magnitude of injector masstiow response assuming a radial step contraction, while the Conical
Convergence Resonance Model (CCRM) treats the contraction from the vortex chamber to the
nozzle using an arbitrary number of small radial steps. In this second part of the study, numerical
calculations are performed to assess nonlinear dynamic response and to compare results with ACRM

and CCRM predictions. The vehicle for these computations is a boundary element method (BEM)

radius of nozzle

radius of tangential inlet

radius of vortex chamber

steady free surface radius at head end, z =0
steady free surface radius in uniform nozzle region

steady free surface radius in uniform vortex chamber region

= velocity components in circumferential, radial, axial directions

tangential inlet inflow velocity

angle of solid wall convergence

total injector pressure drop

free surface deflection away from §

total injector response

velocity potential

angular disturbance frequency

fluctuation value of parameter

steady state value of parameter

amplitude of fluctuation of disturbed parameter

dimensional value of parameter

I. Introduction

that preserves surface shapes with high accuracy.



While the community is pursuing nonlinear behavior in numerous free surface problems, there
are a comparitively small number of results available for the swirl injector. Notable exceptions
to this observation include prior works from our own group [1, 2], as well as full Navier Stokes
computations [3]. The prior efforts from our group utilized an axisymmetric BEM that modeled the
inflow tangential channels as an axisymmetric slot of equivalent inlet area. In the present study,
this condition is relaxed and a more natural axisymmetric inflow condition is applied at the head
end of the vortex chamber. Utilizing this inflow condition also provides a direct comparison against
analytic linear models described in Part I of the study. Parametric studies are conducted to assess
the effect of vortex chamber dimensions, contraction angle, nozzle length, and pulsation magnitude
over a range of frequencies. Recent experimental work [4, 5] provides a strong motivation for the
present work as it clearly depicts evidence of a resonance condition. As evidence, we include the
experimental result from this work depicting the frequency response of spray cone angle, Fig. 1. The

localized peak at the frequency of about 221 Hz was theorized to be a signal of a resonant mode.
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Fig. 1 Experimental data due to Ahn [4, Fig. 6.15] on spray cone angle fluctuation at distances

of 0.7 and 2 nozzle diameters from the nozzle exit, peak observed at 221 Hz



For this reason, the geometry used in this experiment served as a baseline for use in the present
study. This geometry was provided in Tables 3 and 4 of Part I of this study.

Continuing the discussion on that experimental peak, one would wonder what would the existing
Bazarov’s [6] theory give in its vicinity. Figure 2 shows the answer. There is no peak around 221 Hz,
and the closest peak in this area is at 361 Hz, then comes the second peak located further in the
higher frequencies, at 726 Hz. Our motivation is to assess the differences between the Bazarov’s
theory, the linear theory developed in Part I of this study, and fully nonlinear computations. The
following section provides a brief review of the computational tool, followed by results of parametric

studies and conclusions from the study.
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Fig. 2 Response of baseline injector calculated using Bazarov’s [6] linear theory, first peak

observed at 361 Hz, second peak observed at 726 Hz

II. Model Development
Reference [7] provides a complete description of the basic model elements; only highlights will
be presented here in the interest of brevity. An inviscid, incompressible, axisymmetric flow is

presumed such that the How dynamics are governed by Laplace’s equation, V¢ = 0. The boundary



element method utilizes an integral representation of this equation to provide a connection between
velocity potential ¢ values on the boundary, the local geometry, and the local velocity normal to

the boundary, ¢ = 9¢/dn, as follows:
G
b (7 e -0
cid (73) + /r [cv 5= qG} dr’ (1)

where ¢(7;) is the value of the potential at a point 7; , I is the boundary of the domain, ¢; is the
singular contribution when the integral path passes over the “base point,” and G is the free space
Green’s function corresponding to Laplace’s equation. For an axisymmetric domain, the free space
Green’s function can be expressed in terms of elliptic integrals of the first and second kinds and is a
function solely of the instantaneous surface geometry. For this reason, a discrete representation of
Eq. (1) can be cast as a linear system of equations relating local ¢ and g values. In the discretization,
both ¢ and ¢ are assumed to vary linearly along each element, thereby providing formal second-
order accuracy for the method. Since the resulting integrals do not have exact solutions in this case,
Gaussian quadrature is used to maintain high accuracy of integration and preserve second-order
accuracy overall.

While this governing equation is linear, nonlinearities in these free surface problems enter
through the boundary condition at the interface. With regard to the inflow boundary and the
solid wall boundary we can set the normal velocities, g, exactly., At the inflow boundary, they may
be set to their prescribed values as a function of time, and on the solid boundary, they must be
zero at all times. Accordingly, the velocity potentials, ¢, are the unknowns on these boundaries.
The unsteady Bernoulli equation provides a connection between the local velocity potential and
the surface shape at any instant in time. Prior formulations [7] have provided a derivation of this
result suitable for implementation in a Lagrangian surface tracking environment. For the swirling
Hlow, modifications are required to account for the centrifugal pressure gradient created by the swirl.
In the present study, we have made substantive updates to both inflow and free surface boundary

conditions and for this reason will provide additional detail here.



A. Boundary Conditions and Computational Mesh

In prior swirl injector simulations by Park [1] and Richardson [2], the tangential inflow was
modeled as a cylindrical slot, where the How enters through its upper cylindrical surface and proceeds
radially towards the vortex chamber. The prior inflow condition is contrasted with the current
boundary condition in Fig. 3. We choose to introduce fluid axially at the head-end of the vortex
chamber to better replicate the assumptions of the theoretical models in Part I of the study [3],
and because the modeling of the tangential channels is inherently three-dimensional. Physically, the
inflow plane would reside just downstream of the tangential inlet holes (a distance 2R, as shown in
Fig. 3) as Bazarov and others have shown that there are slight changes in the free surface in this

region due to the conversion from a pure swirling How to one that also has an axial velocity. The

qin(?)
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Pe(t)

—-JI—-qQ—Rt

g (t): Current setup
mn ——

pe=0

Fig. 3 Schematic of current BEM flow setup compared to prior models by Park [1] and

Richardson |[2]



axial velocity, iy, is defined:

i = W,
= (1)

where Nj,, is the number of tangential inlets, Win = 1 is the steady inflow velocity (per the nondi-
mensionalization we employ), rq is the radius to the free surface at the inlet plane, and R, is the
radius of the overall vortex chamber. Since the free surface radius r; adjusts to balance the overall
imposed pressure drop, as we initialize a steady flow, ¢;, will adjust until the free surface is no

longer undulating. The inflow velocity at this steady-state condition we define as g;,. Using this

average value over the entire inflow plane, we then impose a sinusoidal oscillation:
Qin (t) = qin + ql(n (t) = qin (]- ik qosc)Sin (“’t)

where ¢,s. is the amplitude of oscillation.

With regard to the gaseous pressure in the core, linear analyses [9, Sec. 6.3] show that its action
may be noticeable only if the gas-to-liquid density ratio is on the order of 10%. Lastly, we will
presume that the overall effect of the surface tension presence is quite weak with regard to the wave
dynamics in the vortex chamber and nozzle. Let us generalize these conclusions and assume that
we can compltely ignore the inertial and capillary effects of the core further on in this study, which
allows us to set the gas pressure in the core to zero, p, = 0.

The free surface boundary condition is the most challenging due to the unsteady and swirling
nature of the flow. Physically, the free surface boundary condition can be thought of as a local
pressure balance where dynamic and static pressure is interchanged (potentially with capillary pres-
sures as well) via the description of an unsteady Bernoulli equation. We cannot “see” the swirling
component of the flow, which is perpendicular to axial /radial low plane, yet this portion of the How
imposes hydrostatic-like pressures that must be reflected in the overall dynamic behavior.

Prior implementations due to Yoon [10], Park [1], and Richardson [2], introduce a total potential
field, ¢, that is comprised of two parts: the first, which describes the movement only in the radial
and the axial directions and the second, which describes the movement only in the circumferential
direction. The linearity of the governing Laplace’s equation permits a direct superposition of these

potentials. The resulting Bernoulli’s equation of these authors has included the Rossby number as



a dimensionless representation of the swirl level. However, for a dynamic situation, the swirl level,
and hence the Rossby number, can vary in time and an improved treatment was required in order
to reflect this fact. For this reason, we employ a slightly different formulation in the present work.

Since angular momentum must be conserved in a potential flow, for an axisymmetric situation

we have:

2 (rus) =27 =0 (2)

where D /Dt is the material derivative, C' = rug is the angular momentum constant associated with
the flow. Since C' must be invariant in a Lagrangian sense, the swirl level can change locally as
waves convect through the vortex chamber. The overall velocity field is:

2 100 2
or’r 98’ 0z

_[a¢ C 89
= {5’ “a—] (3)

where we have used the fact that the circumferential ow component is given by the potential free

V@ = [ura ué’,uz] = I:

vortex.
Next, the Lagrangian derivative for the whole flow field may be written as

Dy _ 09 |

In this equation, we know that the Eulerian time derivative is given by the usual unsteady Bernoulli’s
equation, which, since we neglect the gaseous core presence, can be written as

9 1. .y
gﬁ—iV@-Vqs—A (5)

where A represents the steady state terms. Without the loss of generality, we can set A = 0 by
incorporating the steady terms into ¢. With this, we can rearrange Eq. (5) to

¢

L.

The second term in Eq. (4) can be obtained from Eq. (3) as

ap\>  [(9¢\° ©*2
V¢-v¢=(%> +(£) + = (7)

r2

Combining Egs. (4), (6), and (7), we have
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To get the Lagrangian derivative for the points moving in the 2D BEM plane, which say are
represented by the velocity potential ¢ppar, we can subtract the Lagrangian derivative of the

swirling component of the flow from the Lagrangian derivative of the total field,

Dégpn _ D¢ _ D(C6)
Dt Dt Dt

The Lagrangian derivative of the swirling component of the How can be written as

D (C@) DC Dé
bt Dt (10)

In this expression we know that the first term is zero due to Eq. (2), and for the second term we

have

D6 _ 6 { c ]{3013939}_0
Dt ot |77l |arvae ez T 2

Then we can rewrite Eq. (10) as

D(ce) c?
Dt 12

(11)

Substituting Eqgs. (3) and (11) into Eq. (9) we obtain

Dépem _ 1 3(.*))2 (8@)2 c?l ¢? 1 (3¢)2 (a(D)Q_C-z
T_i[(b_r t\3:) T =73 |\5) T\ =

To be consistent with the ¢-¢ notation for the BEM parameters which we have been using so far,

(12)

(]

we can rewrite the last equation with omitting the “BEM” index,

Do 1|(d¢ 2+ 20\* _cC?
Dt 2| \or dz 2

which is the ultimate form employed within the simulation.

(13)

N

Fig. 3 also shows a notional computational mesh that is employed. Because the surface in the
vortex chamber undulates with time, the grid on the inflow boundary is allowed to compress or
expand to fill the instantaneous distance between the vortex chamber wall and the current head-end
free surface location. Fixed grid spacing is employed on solid walls. On the free surface, a dynamic
grid is utilized. Using a Lagrangian tracking of the interface points, positions are updated at each
instant in time. A spline fit is then applied to the entire free surface and nodes are redistributed

50 as to maintain a uniform grid spacing, dsgriq. Though not shown in the figure, ring-shaped



structures are formed due to capillary instabilities on the conical sheet downstream of the nozzle
exit. A pinch criteria is employed to shed these structures when nodes on opposing sides of the
ligament get within a specified fraction of the overall mesh spacing [11]. Pinching events lead to
dynamic changes in the size of the computational mesh. While the pinch criteria are very important
when attempting to establish the size of the pinched structures, the emphasis of the present study
of the dynamic masstiow production at the nozzle exit makes this criteria of lesser importance as
demonstrated in subsequent grid function convergence studies. Local surface slope and curvature
are computed to 4" order accuracy, and the surface is evolved in time using a 4'"-order Runge-
Kutta time integration. More details on the free surface treatment can be found in Park [1] and

Heister [12].

B. Injector Response Computation
In dynamic system evaluation, the injector response or admittance is often an important con-
sideration. The dimensionless response, Il;,;, describes the level of masstlow pulsation created by a

given pressure perturbation:

L7 4
m,,

m
ILi = n
o Apénj

AI_)inj

Because in our current BEM model we are analyzing the How starting from the left end of the
uniform vortex chamber region, or from z = 2R, of the actual injector, and the tangential inlets
are out of our consideration (see Fig. 3), then the total pressure drop of the BEM injector is equal
to the pressure drop through the liquid body at the inflow boundary. The average pressure drop

required to establish the swirling inflow can be expressed:

cil1 1
Apinj = p— | — =3 14
Pinj = P~ [7_‘{ RE} (14)
where we note that the free surface radius at the inflow boundary, 71, is a function of time when

pulsations are present, and its value is averaged over time to give the mean pressure drop. It can

be shown [9, Sec. 7.6] that the unsteady portion of the pressure can be expressed:

C'_’
Apgnj = P?Tg (15)
1

10



Once a quasi-periodic behavior is obtained, the value for 7} can be computed as the difference in
maximum and minimum surface heights over a given period of the oscillation.

In principle, the nozzle masstiow, 7, can be computed as the integral of the axial momentum
flux across the film at the exit of the nozzle. However, as the computational mesh does not traverse
the film in this region, one needs to compute axial velocities at presecribed interior points as was done
in Richardson [2]. However, this process extends computation times significantly and the analysis at
the curved film boundary at the nozzle exit is not consistent with the assumptions employed in the
analysis in Part I of this study. For these reasons, an alternative approach was taken. Rather than
use the exact exit plane to measure flowrate histories, we use a point a distance of one half nozzle
length (0.5L,,) from the exit plane, as computations show that the film is very nearly parallel with
the injector axis and nozzle wall at this locale. While there is a short time lag between this location
and the actual exit plane, the phase shift associated with this lag is small, as the velcocities in the
nozzle are large and typical nozzle lengths employed are also quite small. Moreover, this location
permits direct comparison against the analytic results developed in Part I of the study.

To avoid the inclusion of interior points, the axial velocities on either side of the film at the
0.5L,, location are computed using 4" order centered difference formulas [9, Sec. 7.6], and & linear
axial velocity profile across the film is assumed. In prior work [2], the velocity profiles across the
film were shown to be quite linear - in fact the velocity on either side of the film are nearly identical
due to the inviscid nature of the assumed How. This process permits a streamlined evaluation of
the nozzle exit flow that is consistent with assumptions employed in the analytic models from Part

I of this study.

III. Grid Convergence Study
Four different mesh spacings, 0.06, 0.07, 0.03, and 0.09 were evaluated using the baseline ge-
ometry described in Part I of the study. Both steady and unsteady characteristics were evaluated.
A dimensionless timestep of 0.0005 was used in all simulations. The dimensionless period for the
highest frequency disturbances to be evaluated is about 0.5 which implies that we take about 1000

timesteps per period for these highest frequencies.

11



Steady state surface shapes have shown to be converging for the mesh size of 0.06 [9, Sec. 7.7].
As the unsteady nature of the solution is of primary value here, the overall frequency response of the
baseline injector was assessed to evaluate mesh sensitivity, For evaluation of unsteady characteristics,
& sinusoidal velocity perturbation of amplitude 30% of the mean inflow velocity was used in all cases.
Figure 4 shows the result of this process indicating an insensitivity in response levels to the four
mesh sizes evaluated. The finest mesh spacing of 0.06 was selected as it was still amenable for use in
the computational environment available for the study. A typical run time on a 2.4 GHz processor

was roughly 60 hours to evaluate response at a single frequency.

IV. Results

Parametric studies were performed to assess the influence of pulsation magnitude, injection
conditions, and injector geometry on its dynamic response. Comparisons are made against the
analytic models developed in Part I of this study. Specifically, we compare predicted resonant tones
from the ACRM, Abrupt Convergence Resonance Model, as well as the tones predicted from the
CCRM, Conical Convergence Resonance Model. The baseline injector geometry described in Part I
of this study serves as the point of departure for all calculations, and all results assume a 30%
pulsation magnitude, except where noted in the pulsation magnitude assessment in the following

section. In total, over 1000 individual cases were evaluated for this part of the study.

A. Assessment of Nonlinearity and Choice of Pulsation Magnitude

The effect of the magnitude of the velocity pulsation was addressed in parametric fashion on
the baseline injector configuration. Velocity pulsation magnitudes, g,s., equal to 5%, 10%, 30%,
and 50%, of the mean injection velocity were considered.

Figure 5 shows the magnitude of the injector responses at various pulsation levels. Overall,
the response is very insensitive to pulsation level, indicating that nonlinear effects are of secondary
importance. Similar behavior was noted in assessing dynamic response of plain orifice [13] and

gas/liquid coaxial [14] injectors.

12



0071

ooet

[ELLRET:

002r  OOTI

wc:@mmnv uoIljeIIBA 9ZIS PLIS 03 A}IAljIsuas asuodsaua 1ojoalfuy § *Si g

ZH ‘J [eUOISTSUIID

0

gy

13



Table 1 Response of free surface radii r1 and r2 to various pulsation magnitudes (baseline

injector, f* = 476.3 Hz)

! ! /= = ! ! =
Gosc | T1 r1 ri/T1 Ta Ty ry /T2

5% 10.72000.0007|0.0981%0.8121 |0.0013|0.1579%
10%|0.7200{0.0014|0.1961% [0.8121 [0.0025|0.3135%
30%10.7199|0.0042(0.5868% (0.8120|0.0076|0.9360%

50%]|0.7199|0.0070{0.9772%(0.8119(0.0127|1.5588%

Figure 6 and Table 1 show the time histories, and the average and Huctuation values of the free
surface radii 71 and 7o (where the latter is the free surface radius at the nozzle center). Perturbations
in the surface shape are rather small even in the case of high amplitude masstiow pulsations as the
swirl level and axial velocity adjust for the fHlowrate variation with little response visible on the
actual free surface. From Table 1, we can conclude that free surface fluctuation increases roughly
linearly with the increase of pulsation magnitude. Figure 7, which shows the wave shapes developing
in the vortex chamber and the nozzle at different pulsation magnitudes, at time t = 100. Within
the bulk of the vortex chamber a sinusoidal wave shape is present, but complex shapes evolve in
the transition and nozzle regions. For the 5 and 10% pulsation levels, the waves are very small
and assessing statistics relative to masstlow pulsation magnitude can be numerically challenging.
In Fig. 7(b), we can see that at 30% pulsation we get a much more distinctive wave shape in the
nozzle than at 5% and 10%. For this reason, we chose this pulsation level for use in the remainder
of the parametric studies. At the same time, by looking at the time histories of head-end (r1)
and mid-nozzle (r2) radii in Fig. 6, we can conclude that the pulsation can be well described as
linear at all considered magnitudes. A question may arise now: why do we get a linear sinusoidal
Huctuation of the free surface at pulsation magnitudes as strong as 30% or 50%? These numbers
seem large, however, bear in mind that the bulk How velocity in the vortex chamber is quite small.
Thus, the resulting bulk How pulsation may be considered as quite weak, which accordingly results

in the linear fluctuation of the free surface.
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B. Conical Convergence Angle Variation

Variation of the convergence angle, a, does not have a great influence on the steady-state shape
of the free surface [9, Sec. 3.1]. However, as changes in a change the overall length of the injector,
we do expect for this parameter to effect the dynamic response of the injector.

Figure 3 depicts the magnitude of the frequency response of the baseline injector with various
convergence angles. Strong response is evidenced at primary resonance and at the second harmonic
of the resonant frequency. A third harmonic appears weakly for the 60 and 90 degree cases, but is
absent at lower convergence angles. In general, increasing o tends to shift resonant peaks to higher
frequencies as the overall injector length is shortened as « increases. The heights of the response
peaks is not greatly affected until « reaches the 30 degree case. The long convergent section in
this case leads to some destructive interference in wave patterns thereby dropping and broadening
peaks in the response curve. This factor may also explain the lack of higher order resonances when
« values are below 60 degrees.

Table 2 provides a comparison of computed resonant frequencies with those calculated from
the analytic models described in Part I of the study. Since the abrupt contraction models ACRM
assume a vertical wall at the contraction plane, we utilize an effective length that includes 1/2 of
the contraction length to evaluate frequencies and resonance conditions. In contrast, the CCRM
does retain « as a parameter. In general, the ACRM is in better agreement with BEM for the
primary resonant peak (Peak 1 in Table 2), while the CCRM does a better job in matching the
higher harmonic (Peak 2).

Figures 9(a) and Fig. 9(b) depict the response levels predicted in the analytic models near the
resonant conditions. In Fig. 9(a) the ACRM model shows a broad peak with a sinusoidal shape
in the region near resonance while BEM results show a much sharper peak. The ACRM model
does & poor job in replicating the second harmonic as was noted in Table 2. Figure 9(b) show the
magnitude predicted by the CCRM model. These amplitudes show an even broader character than
the ACRM model, as a wider range of frequencies lead to substantial amplitude waves under the
CCRM assumptions. While this model does react to the a variation in the same manner as the

BEM has shown, the peaks have the overall tendency to shift to the higher frequencies, and the
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intensity of the outgoing waves, a,, does not exhibit any visible trend.

From Table 2, we can conclude that the ACRM agrees with the first BEM peak relatively well
(within 8% in all cases) but does a rather poor job in replicating BEM results for the second peak.
On the other hand, there is an excellent matching of the second peak frequencies of BEM with
the CCRM, but rather poor job of matching the primary resonance with this model. The CCRM
delivers large refraction waves at higher convergence angles and the wave interactions are highly
complex while the ACRM delivers simpler waveforms. For this reason, the explanation as to why
one model matches one peak and one does a better job matching another peak is highly complex and
a topic for further work. Lacking a more detailed understanding and the computational resources
required for a nonlinear calculation, we can recommend to use ACRM for primary resonance and

CCRM for secondary resonance.

Table 2 Resonant peaks for a variation cases (based on Figs. 8 and 9)

a |Peaks, Hz| BEM |ACRM [CCRM
Peak 1 |178.6| 192.8 116
30°
Peak 2 [416.7| 578.5 448
Peak 1 [193.5| 205.7 118
45°
Peak 2 |464.4| 617.0 | 470
Peak 1 |208.4]| 213.9 120
60°
Peak 2 [494.1| 641.6 | 471
Peak 1 (232.2| 226.2 | n/a
90°
Peak 2 [529.8| 678.7 | n/a

In conclusion, we shall take a moment to recognize that the analytical ACRM and BEM values
of the first peak for & = 45° in Table 2, 205.7 Hz and 193.5 Hz, fall near the experimental peak of
221 Hz in Fig. 1, from which we started the whole discussion in this part of the study. This supports
the conclusion that the resonance condition described in Eq. (4) of Part I of this study has some
merit in describing the frequency where a locally high injector response could be expected. We also

used Bazarov’s technique to analyze this experimental condition and it gives a resonance at a much
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higher frequency of 361 Hz assuming a viscous correction value of 0.1. Ideally, we should have had
a second experimental peak, whose analytical and computational values we already have in Table 2,

to be completely certain in this conclusion.

C. Vortex Chamber Length Variation (90° convergence angle)

A series of simulations were carried out to assess the effect of vortex chamber length, L, =
5,10,15,19, on the response characteristics of the baseline injector geometry utilizing a sharp step
convergence from the vortex chamber to the nozzle. Figure 10 and Table 3 show respectively the
computational BEM results, and the frequencies where the BEM and ACRM response curves for
each L, peak out. The CCRM cannot be used here because a cylindrical section needed to fit into
the 90° step transition would be of length zero, which physically collapses the CCRM to ACRM.
We can see that the peaks shift to lower frequencies, as the vortex chamber length is increased. An
analogy here may be drawn with the string musical instruments. Smaller size instruments, like the
violin, produce higher pitch sounds than the bigger size instruments, like the guitar, or contrabass.
As in the above subsection, this is attributed to the fact that the longer vortex chamber naturally
selects/generates longer standing waves that are the result of the lower pulsation frequency, and vice
versa. We can look at this from the mathematical point of view as well, if we rewrite the equation

for the resonant modes from Part I of the study,

™ 2v—p2
(b'():nm CQT, n=1,3,5,... (16)

with which the ACRM peaks are calculated in Table 3. From this equation, it becomes clear that
the values of the resonant frequencies will decrease, as the vortex chamber length is increased. Note,
however, that this equation does not provide any information about the amplitude of the oscillation
when the injector is at resonance.

The L, = 5 case provides a distinctly different character with a broader peak and no evidence
of a second harmonic. In this case, complex wave shapes are obtained as the nozzle is no longer
a negligible length compared to that of the vortex chamber. It is more difficult to sustain a pure
standing wave with the short chamber, but substantial amplification is still available in a variety of

complex waveforms.
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Continuing the discussion on the oscillation amplitudes, in Fig. 10, we can also see that the
amplitudes of the peak responses grow larger, as the vortex chamber becomes longer. The explana-
tion of physics here may be cast in terms of the spring-damper oscillator, whose vibration energy
is conserved at all times and is given by E = 0.5mw?A?, where m is the mass of the oscillating
body, w is the oscillation frequency, and A is the oscillation amplitude (see discussion in Kinsler [15,
Sec. 1.7]). Notice that the mass has the power of 1, whereas the frequency has the power of 2. Then,
we can write the following: (a) the increase in L, causes proportional linear increase in the mass
of the liquid body in the injector’s vortex chamber; (b) we also know from above, that the increase
in L, decreases the peak frequency; (c¢) in all L, cases, we excite that liquid mass with the same
energy, which is the kinetic energy of excitation 0.5¢7, at the intlow boundary; (d) but, if we have
a linear mass increase from (a) and a quadratic frequency decrease from (b), then, to conserve the
energy of oscillation, the amplitude A should grow in the above formula for the energy.

Now, let us compare the frequencies where the peaks are located in the BEM responses and their
analytic counterparts. In Table 3, we can see that the ACRM matches the first resonant peak very
well for L, values at or above 10. As mentioned above, in shorter vortex chambers, the wave pattern
cannot be described as a simple standing wave. Also, it is clear that the second resonant peak is far

from agreement, which follows the conclusion in the previous subsection that the ACRM’s cannot

Table 3 Resonant peaks for L, variation cases (based on Fig. 10)

L, |Peaks, Hz| BEM [ACRM
Peak 1 622.1 | 754.1
5
Peak 2 |no data|2262.3
Peak 1 3959 | 411.3
10
Peak 2 |no peak|1234.0
Peak 1 287.5 | 282.8
15
Peak 2 | 610.8 | 848.4
Peak 1 232.2 | 226.2
19
Peak 2 529.8 | 678.7
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capture it. On the other hand, the matching of the first resonant peak strengthens the conclusion
we have made in the prior subsection, where we said that the ACRM may be successfully used to

calculate the first resonant peak in steep angle geometries.

D. Nozzle Length Variation (45° convergence angle)

A series of cases were run at nozzle lengths of 2, 4, 6, and 3 using the other dimensions and
tlow conditions from the baseline injector geometry. Surface shapes were evaluated for steady inflow
conditions and the overall film shapes differed only slightly in the nozzle entrance region for the
lengths investigated. The shortest nozzle (L,, = 2) did show a slightly different free surface shape in
this region, but the longer nozzles were nearly identical. The computed injector responses are shown
in Fig. 11 and their peaks summarized in Table 4 reveal that the response is overall insensitive to
the nozzle length. Notice that the L, = 2 response curve looks same as the others. Which tells us
that, even if the free surface in the nozzle entrance transition region was different in this case, it did
not affect the wave reflection/transmission characteristics much.

Theoretically, the deviation of the steady free surface in the L, = 2 case from the rest should
affect us in terms of the CCRM, where the point where the transition ends is one of its inputs.
Nonetheless, based on the knowledge of response constancy at various nozzle lengths, which have
learned from BEM simulations, and for simplicity, we will assume that it ends at the same +0.5R,,
location with the same radius equal to r,, as the other free surfaces. This allows us to use the same
baseline injector results for the analytical peaks in all L, cases.

Let us now compare the analytical and the BEM peaks with each other. In Table 4, we can see
that the BEM computations give nearly the same result for all nozzle lengths. Similarly, ACRM
and CCRM values do not vary with nozzle length. As with the convergence angle study, the ACRM
result agrees well with the primary peak computed in BEM, while the CCRM better matches the
second peak. In general, the nozzle length has little influence on results because of the small amount
of time the fluid spends in this region, i.e. characteristic frequencies in the nozzle Howpath are much

higher than resonant modes determined from chamber characteristics.
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Table 4 Resonant peaks for L, variation cases (based on Fig. 11)

L., |Peaks, Hz| BEM |ACRM | CCRM
Peak 1 |193.5| 205.7 | 118
’ Peak 2 [464.4| 617.0 | 470
Peak 1 |193.5| 205.7 | 118
: Peak 2 |464.4| 617.0 | 470
Peak 1 |193.5| 205.7 | 118
’ Peak 2 |470.3| 617.0 | 470
Peak 1 |193.5| 205.7 | 118
. Peak 2 |470.3| 617.0 | 470

E. Vortex Chamber Radius Variation (45° convergence angle)

A series of simulations were conducted with differing vortex chamber radii (R, ) while keeping
all other baseline injector geometry and flow conditions the same. The channel inflow velocity was
preserved equal to the value described in Part I of the study (W7, = 3.7596 m /s) which implies that
the overall pressure drop was varying as we change vortex chamber radius.

Figure 12 shows the respective ow geometries. Notice that decreasing the vortex chamber
radius leads to decrease in the core radius, and reduction in the angle of the conical sheet exiting
the nozzle. This is due to the fact that the angular momentum, or the swirl strength, respectively
becomes smaller as we have preserved the inflow velocity for all cases. In turn, this allows the
swirling fluid to descend to to a lower core radius. And, because of the greater inertia in the axial
direction relative to the baseline case, the fluid is able to discharge further (see similar results in
Park [1, Fig. 4.15]).

We are more interested in the behavior of the free surface in the transition region. In Fig. 12(c),
we can clearly see that the transition in the smaller R, cases starts more upstream and ends more
downstream of the baseline case. In this study, we consider the following approximations: for
R, = 3.75 case, the transition starts at —1.0R, and ends at +1.0R,,, for R, = 2.50 case, the

transition starts at —1.5R,, and ends at +1.5R,,. Accordingly, the corresponding corrections are
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made in the inputs for CCRM.

Figure 13 and Table 5 summarize the frequency response characteristics for the three R, values
considered. In general, the vortex chamber radius has a tremendous effect on the overall response
levels as larger chambers store larger amounts of fluid and become more susceptible to resonance
pulsations. As we decrease the vortex chamber radius, the peaks shifts to the left, or to the lower
frequencies. In the R, = 3.75 case, we start to see the third harmonic mode. In the R, = 2.50 case,
the third mode is very apparent, and the fourth starts to appear. Higher order harmonics appear
to be more pronounced (relative to the primary peak) with the smaller vortex chambers.

Mathematically, the shifting of the peaks to the left can be clearly attributed to the decrease
in the swirl strength, if we look at Eq. (16), which shows a proportional dependence between the
resonant frequency, wy, and the angular momentum constant, C'. From the physical point of view, we
can say that, as we decrease R,, the relative increase of the low momentum in the axial direction,
which we mentioned above, leads to natural elongation of the disturbance waves, which in turn
causes the oscillating flow system in the injector to “choose” the lower resonant frequencies.

Let us now take a look at the results of the analytic resonance models in Table 5. We can see
that both the ACRM and the CCRM have captured the above BEM trends as we decrease R, —
shifting of the peaks to the lower frequencies. In terms of the actual values of the peaks, however, we
can see in Table 5 that the ACRM performed better and located the first two peaks in R, = 2.50 and

R, = 3.75 cases. Smaller vortex chambers create more one-dimensional flows and this may explain

Table 5 Resonant peaks for R, variation cases (based on Fig. 13)

R, |Peaks, Hz|BEM |ACRM | CCRM
Peak 1 |70.2| 734 |no peak
2.50
Peak 2 [220.5| 220.3 162
Peak 1 [134.2| 132.6 |no peak
3.75
Peak 2 [350.5| 397.7 | 274
Peak 1 [193.5| 205.7 118
5.00
Peak 2 [464.4| 617.0 | 470
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why the ACRM begins to agree better with the BEM results as R, is diminished. In general, the
CCRM compares more poorly as R, is diminished. This may be related to the wrong choice of the
locations where we have assumed that the free surface starts and ends its transitioning, or to the
fact, that in the smaller R, geometries, the equations of the long wave fluctuations of the mass flow

rate and momentum are not accurately representing the flow disturbances.

F. Flow Rate Variation (45° convergence angle)

In this study, we vary the steady inflow velocity W;,, which, one should note, automatically
causes changes in the incoming mass ow rate, through m;, = N;,7R?W,,,, and changes in the swirl
intensity, through C' = Wi, R;,. Varying the flowrate had only minor effects on the overall shape
of the free surface as higher flow is accompanied with higher levels of swirl in all cases. Figure 14
presents the frequency response for several flowrates. Resonant frequencies decrease with decreasing

flowrate, and the amplitudes of the peaks decline with Howrate as well.

Table 6 Resonant peaks for W;, variation cases (based on Fig. 14)

Wi |Peaks, Hz| BEM [ACRM |CCRM
Peak 1 |12.1 | 12.9 7
0.25
Peak 2 [ 27.9 | 38.6 29
Peak 1 | 484 | 514 30
0.50
Peak 2 (119.1| 154.2 118
Peak 1 [108.8| 115.7 67
0.75
Peak 2 |267.9( 347.1 265
Peak 1 [193.5| 205.7 118
1.00
Peak 2 |464.4| 617.7 | 470

The comparison of the peaks in Table 6 reveals that the CCRM has an accurate estimation of
the second resonant peaks. Note that the value of R, in this study was favorable for the this model

to apply. The ACRM still does reasonably well in capturing the first resonant peak frequency.
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G. Comparison of Resonant and Non-Resonant Wave Shapes

For this study, we choose a 90° injector with the vortex chamber length of L, = 19, and consider
the free surface motion in the thin region around the mean free surface radius in the vortex chamber
over a period of the flow pulsation. During this time interval, we will first present the results for the
first resonant frequency of 232.2 Hz (see Table 3), and then the results at a non-resonant frequency,
which, in this investigation, we have chosen to be 357.2 Hz.

Figure 15(a) shows the mode shape of the resonant wave pattern revealing a behavior similar to
a 1 /4 wave oscillator with minimal motion near the node at the head end and maximum motion near
the nozzle inlet. This 1/4 wave resonator shape was postulated in development of the Fundamental
Condition for Resonance and ACRM model in Part I and explains their relative success in replicating
the primary resonant peaks in the parametric studies. We should note that there is some motion
evident at the inflow boundary of the vortex chamber in the simulation results and this would
explain any differences between BEM and ACRM results.

Now, let us take a look at the non-resonant mode shapes in Fig. 15(b). The situation is now
completely different. We do not have a distinct node or an antinode and the standing wave behavior
is replaced by traveling waves. The node that is apparent traveling back and forth around the center
of the vortex chamber. This reinforces our contention in Part I of the study; when the injector is not
at its first resonant mode, the wave pattern in its vortex chamber cannot be described as a standing
wave. It is also interesting to note that the wave pulsations are actually larger in magnitude than

in the resonant case.
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Fig. 15 Resonant and non-resonant free surface wave envelopes in swirl injector’s vortex

chamber (a =90°, L, =19, t = 67.6950...70.0950)
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V. Conclusions and Discussion

The dynamics of the classical swirl injector are highly complex in that the free surface in the
vortex chamber can sustain complex wave shapes due to a combination of reflections and refractions
from the convergent surface that forms the nozzle. Large dynamic response can be generated
leading to dimensionless masstlow pulsations many times greater than dimensionless pressure drop
perturbations. A resonant condition has been shown to exist wherein the injector behaves as a 1 /4
wave oscillator thereby creating large amplitude pulsations at the nozzle that lead to corresponding
pulsations in masstlow. The theoretical prediction for this resonant condition (16) agrees quite well
with the fully nonlinear calculations over a wide range of injector designs and tlow conditions.

We have started this part of the study with the notion that, for the baseline injector, we have
one experimental data point for spray cone fluctuation at the pulsation frequency of 221 Hz. We
also know from Part I of this study that the ACRM predicts the first resonant frequency of 205.6 Hz
while the nonlinear BEM simulations give a frequency of 193.5 Hz. On the other hand, Bazarov’s [6]
response curve does not show any extremum in the area of those frequencies. Based on these limited
data, there is some evidence that the resonance condition described in this work has merit. Clearly
it would be desirable to compare the model against other datasets. Bazarov’s book contains some
high frequency data he took in the 1970’s, but the description of the injector geometries for those
tests is incomplete. Hopefully, the present work will motivate some more fundamental experiments
for which we can compare the techniques discussed in this study.

The vortex chamber radius has the most prominent effect on injector response with smaller R,
values leading to smaller response levels at lower frequencies. However, resonances appear to be
more pronounced as R, is decreased. The vortex chamber length also has a strong influence on the
levels of injector response with longer chambers showing higher response levels at lower frequencies.
At very small chamber length (L, = 5 case) we saw a fundamentally different character of response
with sharp, well defined peaks being replaced with a broader peak. The chamber masstlow rate
also showed strong influence on the overall response with higher flowrates leading to larger response

levels at higher frequencies.
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The nozzle convergence angle (o) and nozzle length (L, ) had a much smaller influence on overall
injector response. Decreasing o tended to decrease the magnitude of resonant peaks slightly and
shift the frequencies to lower values as the overall Howpath length increased with this adjustment.
At low values of a the peaks became less sharp as more complex wave patterns were generated due
to the long convergent section. The nozzle length had almost no influence on the results as for
practical designs even long nozzles are short compared to the vortex chamber length and the fluid
residence time in the nozzle is short due to the high velocities.

The comparison of computational and analytic results is somewhat mixed. The ACRM seems
to do a resonable job in predicting the primary resonance peak for most geometries. In principle, the
simple resonant frequency relation (16) provides the designer with a simple mechanism to predict
this primary resonance if one uses the length to the mid-point of the convergent section as the
equivalent termination of the vortex chamber. Predicting the second harmonic (second peak in the
response curve) is more problematic as neither the ACRM or CCRM results compared consistently
well with the BEM calculations over the parameter space investigated. The theoretical resonance
equation (16) shows that the second harmonic should be at a frequency 3 times that of the primary
harmonic (i.e. n =3 in Eq. (16)). If one regards the BEM results as exact and looks at the ratio of
the ACRM prediction with BEM calculations, the actual n values vary over the range of 2.2 < n < 3
based on results in Tables 2—6. As the vortex chamber becomes small, we attain n values closer to
the theoretical value of 3.0.

While the CCRM utilizes more physics in that it includes a momentum balance as well as a
mass balance, it does not replicate the primary resonance frequencies well and had inconsistent
agreement with the second harmonics computed from BEM. We view this as an area of further
study as it is not well understood why such a situation should exist. While the CCRM does seem
to have some success in replicating the second resonance peak frequency for a number of different
chamber geometries studied, there were also cases with substantial disagreement that cannot be
fully explained. In general, analytic models will have difficulty when wave patterns become more

complex due either to geometric or input signal variations that lead to additional complexity.
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Appendix C — Experimental Study Swirl Injector Dynamic Response using a Hydro-

Mechanical Pulsator
Benjamin Ahn and Maksud Ismailov and Stephen D. Heister
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The dynamic response of a classical (simplex style) swirl injector has been studied
experimentally using a super-scale transparent model with water as the working fluid. A
unique mechanism was developed for imparting controlled perturbations to the injector inlet
massflow by successively blocking and opening tangential inlet flow passages using a rotating
cap over the inlet ports. Two vortex chamber designs (long and short) were evaluated to assess
the effect of this important design variable. High speed imaging of the spray cone and air
core/liquid interface inside the vortex chamber was used to assess dynamic behavior at
frequencies up to 500 Hz. Resonant conditions were detected in both designs and both
measurements gave similar frequencies for the resonant peak. The resonant peak was
compared against recent theory due to Ismailov'' and results compare well only when the

theory is adjusted to account for potential water hammer effects induced by the rotating cap.

Nomenclature
= ullage pressure

= manifold pressure

diameter of nozzle

= radius of nozzle

= radius to centerline of inlet channel (Fig. 1)
= radius of tangential inlet

= radius of vortex chamber

= radius of air core in vortex chamber

= vortex chamber length

= effective vortex chamber length including %2 nozzle contraction length
= velocity in tangential inlets

= total spray angle fluctuation amplitude

= average total spray angle

= core disturbance amplitude (half air core diameter amplitude over mean diameter)



I. Introduction

Swirl injectors have a wide array of application to both airbreathing and rocket combustors due to their ease of
manufacture and excellent spray production characteristics. The theory for steady operation of these devices is well
established (at least for ideal inviscid fluids) and results from these analyses have been calibrated and correlated
against numerous experimental data'. In contrast, the dynamic characteristics of these devices have been much less
studied”***. There is ample motivation to study the dynamic behavior as in propulsion and combustion applications,
there are numerous opportunities for the injector to resonate with processes in the combustor or downstream devices
leading to potentially damaging consequences.

The presence of the vortex chamber (Fig. 1) which interacts directly with the downstream environment due to the
presence of a gas or air core at its center, leads to unique dynamic properties for this device. The strong internal
feedback coupling of the flow rate and pressure fluctuation across different parts of the swirl injector lead to
fluctuations in the volumetric liquid flow rate at the exit of tangential inlets into the vortex chamber, which is delayed
by certain phase shift. These pulsations are manifested in waves that traverse the air core of the vortex chamber, grow
in amplitude as the film thins in the nozzle, and exit into the spray cone/film formed in the near exit region. The
surface waves lead to fluctuations in the nozzle flow which will in turn influence film thickness, spray formation, and
spray angle. In addition, other properties, such as circumferential velocity and pressure drop fluctuations in the liquid
vortex, will all vary due to pressure fluctuations across the injector. All these coupling effects will result in unsteady
drop size distribution and spray angles.

Most of the prior knowledge in injector dynamics has been contributed by Dr. Vladimir Bazarov, whose studies at
Moscow Aviation Institute span much of the past four decades™®’. More recently, investigations in South Korea®
and the United States’" have amplified on the initial body of work. Bazarov’s initial theory shows some opportunity
for injector resonance at intermediate frequencies, but recent work of this group has established a simple
relationship™'' to approximate resonant frequencies using the analogy of waves entering a harbor of a fixed volume.

Experimental work in this field is challenging as most of the dynamic character of interest occurs at very high
frequencies of hundreds if not thousands of Hz. Hydromechanical pulsators tend to drop off in pulsation amplitude at
these frequencies, but they have been used successfully in a number of studies®'*. Piezoelectric devices are capable of
much higher frequencies, but pulsation amplitudes (stroke lengths) tend to be somewhat limited. One example of high
amplitude modulation at high frequencies is due to Anderson'”.

In the present study, it was decided to use super-sized injector in order to reduce the frequencies over which
response might be detected. In an attempt to maximize the flow disturbance due to pulsation, a design was developed
to physically block tangential inlet channels using a rotating cap with multiple holes around its periphery. The
objective of the work was to quantify the dynamic response over a range of frequencies and flow rates for two distinct
injector designs. The following section provides a description of the test apparatus and facility, and results and
conclusions are provided subsequent to this discussion.

II. Experimental Apparatus and Methods

Swirl Injector and Pulsator

Figure 1 provides a schematic representation of the super-sized swirl injector design utilized in the study. Two
units, using short and long transparent vortex chambers, were fabricated to use a common nozzle design with using a
45 degree half-angle converging section as depicted in Fig. 1. Table 1 provides a summary of major dimensions in the
two test articles.

The pulsator consists of a shaft (a) driven by an electric motor, which rotates a dynamic inlet cap (e) that has 16
tangential holes of the same diameter as the holes of the static inlet cap (d) as shown in Fig. 2. As the dynamic inlet
cap (e) rotates about the shaft, the holes in it align periodically with the holes in the static inlet cap as shown on the
right side of Fig. 2, thus allowing the liquid to flow into the vortex chamber. When two sets of holes meet and start to
overlap, a mutual cross-sectional area starts to form and reaches a maximum value when two sets of holes are fully
aligned. The area then starts to decrease as the dynamic inlet cap continues to rotate. It is the change in this mutual
cross-sectional area that gives the pulsating effect in this design. Different numbers of holes in the dynamic inlet cap,
as well as variable rotational speeds, generate pulsation frequencies ranging from 0 Hz to 500 Hz, at a maximum
manifold pressure of 80 psi.

The swirl injector and the pulsator are assembled into the manifold (g), which includes a pressure tap (k) on the
manifold sidewall aligned with the tangential swirl chamber inlets with its axis lying in A-A plane. A Druck pressure
transducer with a response frequency of 2.5 kHz is used to measure the pressure. Sampling rate for pressure
measurement was 1000 samples/sec. The entire vortex chamber is made from transparent cast acrylic to observe the
air core and film thickness inside the swirl chamber, and the pulsator and manifold are made of 304 stainless steel.



Figure 1: Nomenclature defined for swirl injector.

Table 1: Swirl Injector Specifications

Parameter Short Injector Long injector

(inch) (mm) (inch) (mm)
Radius of nozzle R, 0.250 6.350 0.250 6.350
Inflow radius R, 1.125 28.575 1.125 28.575
Radius of tangential inlet R, 0.125 3.175 0.125 3.175
Radius of vortex chamber R, 1.250 28.575 1.250 28.575
Length of tangential inlet L, 0.450 11.430 0.450 11.430
Length of nozzle L, 1.000 25.400 1.000 25.400
Length of vortex chamber L, 5.000 127 6.125 155.575

Dwnamic inlet cap (rotating counter clockwise)

Injector inlet cap (stationary)

Fully aligned Section A-A

Figure 2: Left - Schematic drawing of swirl injector pulsator: a) shaft, b) vanes, c¢) swirl chamber, d)
injector inlet cap, e) dynamic inlet cap, f) manifold cap, g) manifold, h) bearings, i) water supply inlet, j,k)
pressure transducer taps. Right — View of cross section A-A, where holes of the dynamic inlet cap and injector
inlet cap are aligned.

Test Facility Design



The swirl injector experiment (Fig. 3) was housed in the Two Phase Flow laboratory, Neil Armstrong Hall of
Engineering, at Purdue University. The water storage tank, which stores 120 gallons of water, is certified for 150 psia
maximum ullage pressure. A 1-1/2 inch manual ball valve is used as the run valve. The air which is supplied by
building’s compressor and regulated by a 300 psig manual pressure regulator is used to pressurize the water tank.
Water stored in a pressurized air tank is transported to the test article via a 1-1/2 inch flex-hose, which is followed by a
0.5 inch flex hose. Water fills the manifold, enters through the pulsator, and exits thorough the nozzle. Test articles,
optical instruments, and camera are mounted on a 10 by 4 foot optics table. The spray discharging into ambient
environment is collected using a clear 15 by 15 inch square tube before entering a dump tank for it to be drained. The
dump tank is a 30 gallon plastic tank with a 0.75 inch drain valve. For flow visualization, a high speed camera is
placed downstream of the nozzle exit, opposite to a concentrated light source. A 6x24 inch 1 KW Altman Lightning
Co stage light is used as a back light. A Fresnel lens, 6 inch in diameter, 0.06 inch thick, is used to bend and focus the
rays to form a single, concentrated beam of high intensity light from the stage light. The focused light then passes
through a 0.5 inch thick acrylic diffuser plate before reaching the plane of the test article. The experiment was tested
with a horizontal flow with the assumption that the gravity forces were unimportant due to the internal flow
acceleration from vortex chamber to nozzle being much greater than the gravity. Reference 10 provides additional
details on the facility design and operations.

Tank

High Speed Camera

:’D: Pulsator 1------1 e e cmmmmme——aa

Motor and Coupler

Diffusion Plate i Dump Tank
e ——

Fresnel Lens

Stage Light

Figure 3: Schematic of experimental apparatus.
Image Acquisition and Processing
Images are captured using a high speed camera and a commercial software video package'®. A 36 mm zoom lens is

used to enhance the images, by varying the focal length throughout the experiment. Prior to each set of tests, images
are calibrated (pix/inch) by placing a 25 lines-per-inch resolution plate at the injector axis. The high speed camera
settings for spray and air core acquisition are tabulated in Table 2. The procedure for detecting the boundary of the
spray and calculating the cone angle consists of the following steps:

1. Capture the spray using a high speed camera and save the avi file using a commercial video package.

2. Select a frame from the recorded avi file and create a grayscale intensity image as well as zero pad the signal.

3. Create a binary image from the grayscale intensity image using the function graythresh using a commercial

software pacakge'’. This function utilizes Otsu’s method which chooses the threshold to minimize the

interclass variance of the black and white pixels.



4. From the binary image, trace the spray cone boundary where non-zero pixels represent the boundary of the
spray cone and zero pixels constitute the white background.

5. Detect the top and the bottom boundaries of the spray cone at a desirable downstream location from the exit
nozzle.

6. Use the two points and then least-square fit a line parallel to the boundaries of the spray cone, and find an
intersection point that lies on the axis of the injector to calculate the spray cone angle. In order to determine
the axis of the injector, a picture was taken of a known calibration rod that was placed on the axis of the exit
nozzle.

7. Repeat the process for all frames for the total duration of the captured video.

8. Plot changes in total cone angle as a function of time.

9. Repeat the process for different downstream locations from the exit nozzle plane.

Applying the steps above, oscillation patterns in spray cone angles as a function of time can be determined.

Similarly, this technique is used to measure the oscillation of the air core diameter as a function of time. Note that

the local radial distortions are irrelevant since the experiment focused looking at a planar projection of the cone.

These signals are then analyzed using a fast Fourier transform of the spray cone angle or air core radius histories'.

Table 2: High speed camera settings for the spray and air
core acquisition

Nozzle Exit Vortex Chamber

Parameter Spray Angle Air Core Diameter
Exposure time (microsec) 50 63
Image rate (pps) 10000 15037
t/# f/11.0 f/11.0
Duration (sec) 0.7207 0.7188
Image width (pix) 512 512
Image height (pix) 384 256
Image resolution (mm/pix) 0.240 0.126
Number of images per test 7207 10810

The uncertainty analysis for the experiment was calculated using the methodology of Coleman and Steele'*. For the
spray cone half angle, the two measured variables were 1) the downstream distance from the nozzle exit plane and, 2)
the distance measured from the spray boundary to injector axis. It was determined that the uncertainty for spray cone
half angle between 40 and 50 degrees was less than 2%. Similarly, uncertainty for typical air core diameter
measurement ranging from 0.25-0.5 inches (6-12 mm) was less than 6 %.

III. Results and Discussions

The swirl injector experiment was conducted with 16 hole dynamic inlet cap at three ullage pressures, 55, 70 and
80 psia (3.4, 4.8, 5.4 atm), to evaluate the effects of the unsteady flow on the formation of the spray and the air core
diameter. During the experiment the internal flow did not show any signs of two phase flow. Pulsating frequencies
were varied, up to 500 Hz, by adjusting the motor speed. For all ullage pressures, images of the spray cone near the
exit nozzle and the air core inside the vortex chamber, as well as the pressure readings at the tangential inlets (pressure
transducer (k) in Fig. 2) were captured and recorded simultaneously. Figures 4 and 5 provide typical manifold pressure
measurements for the long and short injectors respectively at a tank ullage pressure of 80 psi (5.4 atm). The manifold
sees lower pressure then the ullage pressure because of, 1) the pressure drop across the plumbing system and, 2) the
presence of the dynamic pressure of the swirling flow created by the dynamic cap in the manifold. As the manifold is
of limited volume, it does respond to the transient opening and closing of tangential inlet ports. At low frequencies,
the manifold pressure oscillation is roughly 10-15% of the mean pressure, while at higher frequencies the oscillation



amplitude is reduced to a few percent of the mean. There do not appear to be large differences in the magnitude of
these oscillations between the long and short injectors.

The pressure signals were analyzed for frequency content using the FFT utility in a commercial software
package'’. As expected, strong peaks were found at the low driving frequency (61 Hz in long injector, 50 Hz in short
injector). At these lower frequencies, the second harmonic frequency showed the next highest response — this is
evident as a “beat frequency” in both of the signals in Fig. 4. Some activity was noted at the subharmonic tone, but at
a substantially reduced level.

The higher frequency cases showed an interesting dynamic content. For both the 160 Hz case with the long
injector and 140 Hz case with the short injector, the subharmonic (80 and 70 Hz, respectively) showed FFT response
comparable or greater than that of the primary driving frequency. Negligible response was noted at the second
harmonic for these higher frequency cases, the short waves associated with this harmonic must be significantly
damped in the radial passage between the rotating cap and the manifold outer wall.

Manfol] Presase 2l 61 H-
%"m T T T T
A,
= 5
=
5 W ]
o Ei 1 1 1 1 1
1] 117 01 |y & | b4 025
Maniold Presare ab 160 Hz
%"m T T T T
&
= 5
=
E 6l
n 5 1 1 1 1
] 1117 1 15 | 4 025
Tane: {58c)

Figure 4: Measured manifold pressures (location k in Fig. 2) for the long injector at two different frequencies,
at an ullage pressure of 80 psi (5.4 atm)
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Figure 5: Measured manifold pressures (location k in Fig. 2) for the short injector at two different frequencies,
at an ullage pressure of 80 psi (5.4 atm)

The average mass flow produced by the injector was determined over a range of frequencies using a standard
“catch and weigh” procedure. For all three ullage pressure settings 55, 70 and 80 psia (3.7, 4.8, 5.4 atm), the motor
was set to four different speeds, in order to determine the mass flow rate at different pulse frequencies. The
experiment was run and the spray was captured for 60 seconds to calculate the mass flow rate in kilogram per second.
The resulting measurement has a maximum uncertainty of 1.7 percent. Assuming a steady flow at the average



manifold pressure, the theoretical mass flow rate calculated using classical swirl injector inviscid theory® was 0.476,
0.558, and 0.606 kg/sec for P,,q. at 55, 70, and 80 psia (3.4, 4.8, 5.4 atm) respectively for both injectors.

The measurements are summarized in Figs. 6 and 7. In general the average measured mass flow rate decreased
slightly as frequency increased, presumably due to the dynamics of the tangential inlet opening and closing at greater
rates as inlet cap speed increased. Even though it utilizes the same inlet and nozzle configuration, the long injector
generates flow rates about 10% higher than that of the short injector. Qualitatively, this may be explained by the fact
that longer chamber imposes more friction on the rotating flow, hence decreases its momentum, which makes the core
diameter to decrease, which makes the cross sectional area of the flow in the nozzle of increase, which increases the
flow rate'’. The discharge coefficient data (Fig. 7) show values above unity for most of the conditions measured
implying that measured flows are higher than those computed on a 1-D inviscid basis. Since the theoretical values
should represent an upper bound, it is speculated that there may have been some water hammer effects induced in the
annular passage between the rotating cap and the outer manifold wall. In particular, the rotation of the cap imposes a
large dynamic response at the inlet to the tangential channel (a main factor motivating this type of pulsator design)
which would presumably be substantially larger than the oscillation detected in the manifold. The postulated water
hammer effect is stronger on the long injector as the radial passage over which the pulsations occur is longer in extent
as well. Manufacturing issues preclude the installation of a pressure tap within this buried location, so there is not
sufficient information to confirm this hypothesis, however the manifold pressure measurements (Figs 4,5) do show
slightly higher pulsations for the long injector.
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Figure 6: Measured average mass flow rate for 16 hole dynamic inlet cap for the short and the long swirl
injector.
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Figure 7: Discharge coefficient behavior for the short and the long swirl injector.

Spray Angle Measurements

Over a broad range of frequencies, the pulsations within the conical sheet were easily viewed with the naked eye.
Using the signal processing technique outlined in the prior section, quantitative measurements of spray cone angle
were made at various axial stations. Figure 8 shows two typical images captured by the high speed camera during a
forced excitation of the injector. The spray cone at the two separate times shown in Fig. 8 has cone angle varying as



much as 7.9 degrees when measured at location 1.0 D, downstream from the nozzle exit plane (denoted as the vertical
line in the images). In addition, the intensity variations of the light passing through the conical films indicate that the
spray film thickness also changes during the pulsed state. In Fig. 8 the captured spray seen on the right has a larger
maximum film thickness than that on the left. The high amplitude pulsations at this modest frequency cause
corrugations in the sheet as evidenced in both images.

Figure 8: Typical images of the conical sheet in the near exit region of the orifice using the short injector at a
pulse frequency 100.1 Hz and P, ~ 55 psia. The measured spray angle is 94.6 deg (a) and 86.7 deg (b).

Figure 9 illustrates the spray angle variation at 1.0 D, downstream from the nozzle exit plane on the left, and the
corresponding Fast Fourier Transform (FFT) signal on the right. The short injector data is depicted here for a manifold
pressure of 55 psia. For frequencies greater than 30 Hz ,the spray cone angle varies in a saw-toothed manner as
evidenced in the waveforms at the three frequencies shown. If the total angle is decomposed into two halves extending
from the axis of the nozzle to the boundary of the spray cone, the top and the bottom half of spray angle generally
show to be in phase.

The images on the right side of Fig. 9 are the FFTs of the waveform signals on the left. The FFTs show a strong
peak at the driving frequency whose amplitude is dependent on the driving frequency itself. Large amplitude
pulsations are present (well within the accuracy of the measurement) over the frequency range shown. There is little if
any evidence of subharmonic or higher harmonic content, although the latter could not be assessed at the highest
frequency due to potential aliasing errors.

Figure 10 shows the overall cone angle response curves for both the short and long injectors at the three ullage
pressures used in the study. The amplitude of the cone angle fluctuation is not the same for all driving frequencies.
Results are shown using two distinct measurement stations 1 and 2.5 nozzle diameters downstream of the orifice exit
plane. Despite the existence of forces such as surface tension, acrodynamic, and gravity, the major portion of the spray
angle pulsation is the driving force from the pulsator. In general, the results at all three measurement stations show the
same trend, although the results at x=2.5 D, show the largest amplitude response in this location furthest from the exit.
The maximum response occurs near 300 Hz for the short injector and at frequencies near 250 Hz for the longer
injector. The difference in the maximum frequency response is due to the short injector having a higher resonant
frequency than the long injector. Power limitations in the motor driving the swirl cap did not allow us to fully capture
the peak response in the long injector at the highest manifold pressure. In general, peak response frequencies tend to
increase with ullage/manifold pressure.

There is also some evidence of a peak in the response at low frequencies below 100 Hz, although this peak is less
pronounced than the main resonance. The swirl cap is rotating at fairly low speeds at the lowest frequencies evaluated
and it is possible that the pulsations are becoming lower in amplitude as a result. Clearly, the cone angle response (as
measured on this basis) should drop to zero at zero frequency as we would expect a steady conical sheet under this
condition. For this reason, the measurement is not completely reflective of dynamic response, however, it is believed
to be a good indicator at the higher frequencies where waves traveling along the sheet are more comparable in length
to the sheet’s thickness.
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Figure 9: Measured spray cone angle for short injector at 1.0 D, for P, e, ~ S5 psia (left). Frequencies

detected from applying FFT to total spray cone angle data (right). Peak amplitude is located at 100.1 Hz (top),
300.3 Hz (middle) and 440.7 Hz (bottom). The actual pulsation frequency was 101.0 Hz (top), 300.0 Hz (middle)

and 442 Hz (bottom).
. Shorl imjeclor, Pelleg e 55 peia o Lomg Igecior, Pallage 55 peia
ODist. 1D ' ' ' ODist. 10 ' '
- = a - 1= ¢r;>
4,l| % Dist. 2.50 < Dist. 2.50
#
= )
s
0?2-
i
1 1
- i
u] o




Shorl Injecionr, Pellnge 70 pia Long Injecior, Pellage 70 psa

ODist. 10 ODist. 1D
4,l| % Dist. 2.50 = E < Dist. 2.50 - R
# #
83 - 83 -
s *x
0?2- . ﬂ?z- 4
o o
1t . 1 .
100 200 300 400
Puize Frequency (HZ)
. Shorl injedionr, Pellsge 30 peia . Lomg Injedionr, Pellsge 30 p2n
“[oDist. 1D ' ' ' “[oDist. 10 ' '
4 = Dist. 2.50 4 = Dist. 2.50
# #
8 3 g3
= =
{I}EZ' mgz.
F. ) o
1 1r
% % 460

Figure 10: Frequency response curves for summary plot of spray cone magnitude measured at 1.0 and 2.5 D,
downstream from the nozzle exit plane at P, S5, 70 and 80 psia for the short injector (left column) and the
long injector (right column).

In order to understand the evolving profile of the spray cone generated during the dynamic state a series of images
of the same pulsed flow condition were captured near the exit nozzle. Figure 11 shows two distinct forms of spray
being generated. The image on the left is shaped like a trumpet (convex), with the spray curing outward from the axis
of the injector, whereas the image on the right is shaped like a tulip (concave) with the spray boundary turning inward
to the axis of the injector. This spray angle oscillation is due to changes in circumferential velocity inside the vortex
chamber. As the holes in the dynamic cap rotate about the holes in the stationary cap, the mutual cross-sectional area
changes, altering the velocity of the flow entering tangential inlets (that is mass flow rate). This change in the flow
velocity at the inlet changes the circumferential velocity inside the vortex chamber and propagates downstream
towards the nozzle exit and results in the oscillation of the cone angle. Finally, a pulse wave is observed, where the
atomizing jet breaks up into regularly spaced clumps along the flow direction®’. The bunching of cones and waves
seen in the experiment was similar to the findings reported in previous work'”.

Figure 11: Gross appearance of the conical sheet boundary: a) Trumpet-shape and b) tulip conical sheet shapes
at P,y ~ 70 psia for short injector.

Dynamic Measurement of Air Core Diameter



Another set of experiments was performed to measure the air core diameter fluctuation inside the vortex chamber
during the dynamic state. Figure 12 shows air core surfaces at two different times while the pulsator is in operation.
There is a clear undulation in the air core diameter, visible in Fig. 12, indicating the existence of a wave superimposed
with the air core inside the vortex chamber. This phenomenon was observed for frequencies up to 500 Hz, which was
the maximum frequency obtained with the 16 hole dynamic cap. This phenomenon was not observed in a non-pulsed
system, which was confirmed by the cone angle fluctuation diminishing to zero in Fig. 10

Figure 12: Air core inside the long vortex chamber with pulse frequency ~ 484 Hz and P, ~ 55 psia. Flow
direction is left to right.

The pulsator changed the vortex chamber air core diameter as much as 4.5% for some frequencies. It was noted
that the air core diameter fluctuation magnitude maximized at certain frequencies indicating a resonance similar to that
observed in the spray angle. Similar image processing was carried out on the air core diameter measurements and
FFTs of these signals were constructed at various frequencies to assess overall response characteristics. These results
are summarized in Fig. 13 for both short and long injectors at ullage pressures of 55 and 70 psia where the distance
A350 is at an axial station 2.15 inches (55 mm) of the nozzle exit plane. We were unable to make measurements at
the highest ullage pressure due to difficulties in providing adequate power from the motor to drive the swirl cap at this
highest rotation rate. Figure 13 shows resonant conditions at frequencies very similar to those detected with the spray
angle measurements (Fig. 9). In this case, there is no indication of a subharmonic peak and the amplitude of the
pulsation grows toward a maximum at zero frequency as one would expect from linear theory. There is some
evidence of a second peak in the 55 psia ullage pressure data for the long injector, but this conclusion is tentative as it
could not be replicated in the shorter injector and because there were only a few data points establishing this trend. In

general, the trend lines in Fig. 13 (and Fig. 10) are more for clarity in capturing the data than in suggesting specific
curvature/slope in a given region.
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Figure 13: Measured dynamic response of air core diameter inside the vortex chamber at P,,,. 55 and 70 psia
for the short injector (left column) and the long injector (right column).

Comparison of Resonant Frequencies with Theory

Recently, Ismailov developed an analytic expression for swirl injector resonance based on the wave speeds and
volume of fluid within the vortex chamber. The methodology follows a similar path as that used to find resonant
wavelengths/frequencies for waves entering a deep harbor as the volume within the harbor interacts with waves
entering its constricted entry much like waves in the vortex chamber interact with the nozzle of the swirl injector.
Ismailov and Heister'' provide a derivation of this simple result, referred to the Abrupt Contraction Resonance Model
(ACRM). The conical inlet to the nozzle is necessarily neglected in this simple result and the vortex chamber is
lengthened by 2 of the conical entry length to provide an approximate dimension for wave resonance. The predicted
primary resonance frequency, ®, from this model is:

Where V, is the injection velocity through then tangential inlets, L, is the effective length of the vortex chamber

including half of the nozzle contraction length, and r,. is internal radius to the surface of the film in the vortex
chamber. The vortex chamber film radius and tangential inlet velocity are coupled via the pressure drop across the
film as presented in the classical swirl injector literature®”. This result indicates that shortening the vortex chamber

length, L. or increasing the injector flow rate (i.e. V; ) will tend to increase resonant frequencies. Using this result,

resonant frequencies were computed for each of the three ullage pressures for both long and short injectors. During
this process, we became concerned that the dynamic swirl cap may be inducing effects not considered in the model as
evidenced by the manifold pressure and discharge coefficient data in Fig. 4-7. There appears to be evidence of water
hammer effects that would substantially affect the inflow pressure/velocity as a result of the periodic opening and
closing of tangential inlet passages. For this reason, the effective feed pressure was raised in an effort to capture this
effect; a value of 40 psia seems to provide an excellent result as indicated in Table 3. In fact, the correction may likely
be dependent on the speed of the rotating cap, but there is insufficient information to produce a logical result given the
manifold pressure is the only measurement and this is far displaced from the tangential inlet. Clearly this is an area
that would benefit from further exploration.

Table 3 provides an overall comparison of the experimental measurements (both cone angle and air core diameter)
with base ACRM and corrected ACRM results. The experimental measurements are in good agreement (less than
5%) between the two approaches. The uncorrected ACRM values are significantly lower than those in the
experiments. Applying the 40 psia correction brings the ACRM values very close to the measured results. While we
believe that there is some basis for the correction, clearly more measurements are required to fully assess the dynamic
character of the swirl cap and its influence on the massflow pulsation produced at various rotation rates.

Table 3: Comparison of primary peak response frequencies (in Hz) of measured nozzle
exit spray angle and values computed from the ACRM

Short Injector Long Injector
Piiage 55 psia 70 psia 80 psia 55 psia 70 psia 80 psia
Measured Peak Spray 5, 324 345 241 261 n/a
Angle
Measured Peak Vortex 288 307 --- 20 274 .
Core Diameter
ACRM, uncorrected 205.7 240.9 261.8 170.7 200.0 217.3
ACRM, corrected 290.3 316.3 3324 241.0 262.6 276.0

Generation of Travelling Waves

A series of images of a propagating wave inside the long injector vortex chamber for excitation frequency set at
491 Hz is shown in Fig. 14. Note, the two arrows on all images represent the location of the maximum air core
diameter in each frame.
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Figure 14: Series of images of a propagating wave inside the long injector vortex chamber for P, 55 psia
with pulse frequency set at 491 Hz. Flow direction is left to right.

The following phenomena are observed. In frame (a), a surface wave is located at the head end of the vortex
chamber. A surface wave which is generated by a flow disturbance at the head end propagates downstream along the
injector axis, as captured in frames (b) through (e). The wave is travelling downstream and into the converging part of
the vortex chamber while rotating about the axis of the air core with some large amplitude as captured in frames (g)
and (h). When the wave reaches the nozzle, part of it goes into the nozzle, part of it reflects back. The wave that exists
in the vortex chamber is a result of superposition of forward and backward traveling waves. Therefore, the observed
wave length in the vortex chamber is not exactly equal to the wavelength that corresponds to 491 Hz. A newly
generated wave then starts again from the vortex chamber head end and repeats the process. The wave images showed
that the disturbance wave characteristics depend on the disturbance frequency, as this effect is occurring at the
excitation frequency of the pulsator. The period of this travelling wave approximately matches the pulsation
frequency. That is, 1/(0.20463-0.2023) = 430 Hz., and pulse frequency is at 491 Hz.

IV. Conclusions

An experimental study of the dynamics of a classical (simplex) swirl injector has revealed the behavior of the
conical sheet formed near the injector exit and internal film within the vortex chamber. A super-sized, transparent
injector configuration was used with a unique pulsator design that periodically blocked and opened tangential inlet
channels and in doing so provided high amplitude perturbations. A 16 hole rotating cap was used to create the
periodic blockage and measurements were successfully taken at frequencies as high as 500 Hz. Manifold pressure
measurements do indicate unsteadiness due to the pulsations induced by the operation of the rotating cap and the mean
discharge characteristics of the device reveal that there may be some water hammer induced flow as the discharge
coefficients exceed unity under most operating conditions.

Observation of the dynamics of the conical sheet in the region near the nozzle exit provided an excellent means of
assessing the dynamic response of the injector. Data were repeatable at various axial stations and provided good
signal/noise characteristics over a broad range of frequencies. Resonant behavior was observed in these data as
theorized in the recent work of Ismailov’. Comparisons of the measured resonant frequencies with the theoretical
results of Ismailov and Heister'' yielded poor results, but if the theory used an adjusted manifold pressure to reflect
potential water hammer effects an excellent correlation was obtained. Unfortunately, the experimental apparatus was
not amenable to further exploration of water hammer effects and this would be a topic for further study.

Finally, traveling waves of the type theorized by Bazarov® were imaged within the vortex chamber at non-resonant
conditions. The speed of these waves correlated fairly well with the pulsation frequency.
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